
Cultures of Programming
Lessons from 70 years of learning

how to control the electronic computer

Tomas Petricek, University of Kent

tomas@tomasp.net | @tomaspetricek

Structure of Scientific Revolutions (1962)

What differentiated these various schools was

not one or another failure of method—they

were all ‘scientific’—but what we shall come to

call their incommensurable ways of seeing the

world and of practicing science in it.

Thomas Kuhn

Different ways of programming?

How to specify programs?

How to avoid program errors?

What are types good for?

How to make sure it works?

What is object-orientation?

What activity is programming?

Hacker culture

Mathematical culture

Business culture

Engineering culture

Creative culture

Scene 1
ENIAC and EDSAC: Programming in the 1940s

It is 1946 and the ENIAC computer has just been introduced.
This raises a question of how to program such machines?

T

Surely, building a computer can be outsourced to a sub-
contractor like work on other scientific instruments!

B

This is hard… You have to fiddle with the machine and try things out!H

I think you should figure things out logically before trying.M

Did anything change in 1949 when the EDSAC computer was built?T

It’s still the same, but punched cards make it a bit quicker to try things out!H

Oh, but we could reduce the number of instructions by introducing subroutines!E

Good, because this fiddling is expensive. Programs should
be run by operators to use the machine effectively.

B

“The ENIAC was a son of a bitch to program”
Betty Jean Jennings Bartik

The ENIAC had (…) five buttons, which read
“Start,” “Stop,” “Continuous,” (…) We could [also]
disconnect one of the program-pulse output
cables and stop it after a particular operation.

Many times we could not tell whether the
ENIAC was making an error [because of a
blown tube] or we had a bug in our program.

Betty Jean Jennings Bartik

Debugging the ENIAC

Adele [Goldstine] was an active type
of programmer, trying things very
quickly. I was more laid back and
given to attempting to figure out
things logically before doing anything.

Betty Jean Jennings Bartik

Hackers and Mathematicians

Programming the EDSAC

Completed in 1949
in Cambridge, UK

Designed as a stored
program computer

Programmed using
punched cards

The way to debug a program (…), was to sit
at the console and execute the program
manually, instruction by instruction, while
observing the registers and memory on
monitor tubes (…).

Martin Campbell-Kelly (2011)

Debugging the EDSAC

Post-mortem routine – print out a region of the
store so that it can be studied offline if program
gores wrong.

Checking routine –program executed by an
“interpreter” that printed diagnostic information

“From early 1950, it became possible to assign
a full-time operator to the EDSAC who would
run programs on behalf of users.”

Martin Campbell-Kelly (2011)

Debugging the EDSAC

Computers as a scientific instrument.
Human processes to use it efficiently.

Business culture
Use the machine to build better tools
for controlling, testing and debugging.

Engineering culture

Direct interaction with the machine,
often using individual expertise.

Hacker culture

Treat programming as mathematical
challenge to be solved logically.

Mathematical culture

Scene 2
Time-sharing and minicomputers in 1950-1960s

It is 1956 and programming is done via batch processing, with the exception of
experimental machines like TX-0. Is this the start of a computing revolution?

T

Blocking a $3 million machine for hours? What a waste of resources.B

Absolutely. You can even modify program
while sitting at the computer. A miracle!

H

Imagine if you could use computer like this in a
classroom and use it to teach children about thinking!

C

H

Maybe we could enable the same interaction by letting multiple
users work concurrently with a single machine?

E

Time-sharing may work fine for that, but for real interactive use that uses
screen rather than terminal, computers need to become personal.

Users debugged their programs right
at the console, sitting there sometimes
for hours (…) usually at night.

Using these features (…) Ivan
Sutherland was constructing
[Sketchpad] a system that displayed
drawings with which users could
interact (…) in real-time.

Severo Ornstein (2002)

Programming TX family computers

The Big Dealers solution was to divide
up the machine’s cycles in such a way
that many [remotely connected] users
could use it at the same time.

Small Dealers felt that real-time,
interactive use via a display was
crucial and that Time-Sharing would
never provide such capability.

Severo Ornstein (2002)

But interactive computing is expensive!

Sketchpad makes it possible for
a man and a computer to
converse rapidly through the
medium of line drawings.

Ivan Sutherland (1963)

Creative culture enters the scene in 1960s

The LOGO classroom experience was
a revelation! This was more like the
environment of powerful epistemology,
the environment of media.

Alan Kay (2013)

VisiCalc was one of two

application products (with

WordStar) that were (...) really the

software underpinnings for the

(…) explosive growth of the

personal computer industry.

Burton Grad (2007)

Business culture strikes back in 1970s

Explore computers for the sake of
computers, requiring full control.

Hacker culture

Focus on business problems affects
what interaction is supported.

Business culture

Again, solving computer-related
problems by using the computer.

Engineering culture

Use computers as new media and in
unexpected ways, often in education.

Creative culture

Interlude
Why cultures of programming matter

Why cultures of programming

Past

Make sense of past

developments!

Cultures clash as

well as collaborate.

Present

Combine ways of

problem solving.

Avoid cultural

misunderstandings!

Past

Imagine unexplored

new developments.

Know where to look

for cool ideas.

Scene 3
What kind of activity is programming?

The very idea of a programming language is a metaphor. Is this just an accident?T

Does that mean users can arbitrarily change your programs!?B

It is just bits in memory!H

Children programming Turtle with LOGO do not think of formal
languages. Programming is interacting – with the medium.

C

Even if programming is using a language, you can build various useful tools…E

Not an accident. To program is to manipulate terms in formal languages!M

Is it decided then? Is programming like writing?T

All creative uses of programming are interactive!
But there is more – think about data science tooling.

C

How it became natural to think of

programming as a linguistic activity?”

From “programming notations as attributes

of individual machines” to free-standing

notations, drawing “on the disciplines of

symbolic logic and linguistics” for their

description.

Nofre et al. (2014)

When technology became language

“The purpose of the Smalltalk project

is to provide computer support for the

creative spirit in everyone.”

“If a system is to serve the creative

spirit, it must be entirely

comprehensible to a single individual.”

Dan Ingalls (1981)

Creative origins of Smalltalk

“A user interface is simply a language in
which most of the communication is visual.”

“Every component accessible to the user
should (…) present itself in a meaningful
way for observation and manipulation.”

Dan Ingalls (1981)

Interacting with Smalltalk

Lack of a standard. “Each vendor had a slightly different version -
not so much a different language, as a different platform.”

Deployment. “Smalltalk (…) computation takes place [in] a ‘sea of
objects’. If you want to deploy an application by separating it from
the IDE (to (…) protect your IP) it turns out to be very hard.

Gilad Bracha (2020)

What killed Smalltalk?

Live coded music

Where programming is still interacting?

Exploratory data analytics

Programs lists of bits let you see what
actually goes on in a computer.

Hacker culture

Programs as closed artifacts works
well in the commercial setting.

Business culture

Programs as interaction with dynamic
medium allows more creative uses!

Creative culture

Programming as a formal language
works well for academic research!

Mathematical culture

Conclusions
Making sense of programming past & future

Are here to stay. After 70 years, it’s not just a
sign of an immature field.

Interact in many ways. Clash over principles,
collaborate to improve programming practice.

Help us understand. Controversies of the past,
current debates on hiring, methodologies, etc.

Cultures of Programming

Thank you!
Mathematical, engineering, hacker,

business and creative cultures

to make sense of programming!

Tomas Petricek, University of Kent

tomas@tomasp.net | @tomaspetricek

