Cultures of Programming

_essons from /0 years of learning

Now TO control the electronic com

Tomas Petricek, University of Kent
tomas@tomasp.net | @tomaspetricek

outer

b W
i\ 44 Y4

NN

AN INN
N
NN A A



Structure of Scientific Revolutions (1962)

What differentiated these various schools was
Not one or another faillure of method—they
were all ‘scientific —but what we shall come to
call their incommensurable ways of seeing the
world and of practicing science in it.

Thomas Kuhn




Different ways of programming?

How to specify programs? -

How to avoid program errors”?
What are types good for?

How to make sure it works”? —
What is object-orientation? —

What activity is programming? —

Mathematical culture




Scene |
ENIAC and EDSAC: Programming in the 1940s






)

Bartik

ings

The ENIAC was a son of a bitch to program
Betty Jean Jenn

(




Debugging the ENIAC

The ENIAC had (...) five buttons, which read
‘Start,” "Stop,” "Continuous,” (...) We could |also]
disconnect one of the program-pulse output
cables and stop it after a particular operation.

\Viany times we could not tell whether the
ENIAC was making an error [because of a
plown tube| or we had a bug in our program.

Betty Jean Jennings Bartik

e ,a Ploneer Programmer



Hackers and Mathematicians

Adele [Goldstine] was an active type
of programmer, trying things very
quickly. ' was more laid back and
given 1o attempting to figure out
things logically before doing anything.

Betty Jean Jennings Bartik



Programming the EDSAC

Completed in 1949
in Cambridge, UK

Designed as a stored
program computer

Programmed using
punched cards




Debugging the EDSAC

The way to debug a program (...), was to sit , (ALCULLILE
at the console and execute the program 4| LA LLIELL
manually, instruction by instruction, while A bmomriote
observing the registers and memaory on /
monitor tubes (..).

Martin Campbell-Kelly (2011)




Debugging the EDSAC

Post-mortem routine — print out a region of the
store so that it can be studied offline if program
gores wrong.

Checking routine —program executed by an
interpreter” that printed diagnostic information

From early 1950, it became possible to assign
a full-time operator to the EDSAC who would
run programs on behalf of users.

Martin Campbell-Kelly (2011)

heory to Pract The Invention
of Programming, 1947-51

Martin Campbell-Kelly

Warwick University

Abstract. This paper describes the clopment of programming for the
ED\A(.mmpuler at Cambridgs ity, begi 9
in the publ n in 1951 of th
Electronic Di;
Gill. The relationship to earlier progr nmin«‘
ne and John von Neumann du
Advanced Study, Princeton Universi
of the Cambridge programming

Prolog

Tt is diff \ult to reconstruct how one came to choose a direction in life, a partic ular
t or profession. T think this is because big decisions are the re
all events, some more memorable that others. For me, the most s
event pllllmg me on the road to r hi rred whe -amming for
s as an undergraduate i E ce at Manchester University in 1969.
working in the Radcliffe Library and happened to come across an ol seure, to
me, book called The Preparation of Programs for and Eleci
by Wilkes, Wheeler and Gill (1951). The boc about the progr: nmmg regimen
devised for the Cambridge Uni EDSAC. It was rather like looking at
computing from another civilization, .:Imo another planet. The book clearly
about programming, but not fi

senior lecturer at what was then
1976—computer science graduates
were thin on the gruund so it was possible to get a job in an academic department
ithout a higher degree. The Polytechnic, which had aspirations to improve its
academic standing, had Ih:- enlightened policy of encouraging staff to pursue a PhD
degree on a part-time I leapt at the opportunity, and after some deliberation
about whether T should do something relevant T decided to pursue the irrelevant—a
PhD in the history of computing. It turned out to be not irrelevant at all.
But first, I needed a supervisor. By a life-changing stroke of luck, Newcastle
University just 15 miles up the road from
Randell had recently puhlnhed The Origins of Digital (am]nmin (1973) The book
5 uich, T w
approaching Brmn but he invited me for a talk and instantly put me at my ease. We
agreed almost immediately that a study of the early development of programming

S 6875, pp. 23-B7, 2011







scene

Time-sharing and minicomputers in 1950-1960s






Programming TX family computers

Users debugged their programs right
at the console, sitting there sometimes S
for hours (..) usually at night. E -
. e
Jsing these features (...) Ivan
M =

Sutherland was constructing
Sketchpad] a system that displayed
drawings with which users could
interact (...) in real-time.

Severo Ornstein (2002)




But interactive computing is expensive!

The Big Dealers solution was to divide
Up the machine's cycles in such a way
that many [remotely connected| users
could use it at the same time.

Small Dealers felt that real-time,
interactive use via a display was
crucial and that Time-Sharing woulc
never provide such capability.

Severo Ornstein (2002)



Creative culture enters the scene in 1960s

Sketchpad makes it possible for
a man and a computer to
converse rapidly through the
medium of line drawings.

lvan Sutherland (1963)

The LOGO classroom experience was
a revelation! This was more like the
environment of powerful epistemology,
the environment of media.

Alan Kay (2013)



Business culture strikes back in 1970s

VisiCalc was one of two
application products (with
WordStar) that were (...) really the
software underpinnings for the
(..) explosive growth of the
personal computer industry.

Burton Grad (2007)







Nterluge

Why cultures of programming matter



Why cultures of programming

Past Present Past

Make sense of past Combine ways of Imagine unexplorec
developments! nroblem solving. new developments.
Cultures clash as Avoid cultural Know where 1o look

well as collaborate. misunderstandings! for cool ideas.



scene 3

What kind of activity is programming?






When technology became language

How It became natural to think of
Drogramming as a linguistic activity?”

.

-rom ‘programming notations as attributes
of individual machines” to free-standing
notations, drawing "on the disciplines of
symbolic logic and linguistics’ for their
description.

Nofre et al. (2014)

When Technology Became Language

The Origins of the Linguistic Conception of Computer
Programming, 1950-1960

DAVID NOFRE, MARK PRIESTLEY, and
GERARD ALBERTS

Introduction

The second half of the 1950s saw the emergence of a new vision of how
computers were to be programmed. At the beginning of the d
grammers had ei s fo /ing a problem in obsc
ne. By the decade’s end,

formulas, and, in som

ferent machines, thanks

and IT. Furthermore, professional and industrial bodies were putting
ward ambitious prop or very powerful “programming languages,
the codes were now widely called, and some of these, notably ALGOL and
COBOL, were explicitly defined to be machine-independent no ns. In

Centre d’Estudis d’Historia de I incia, Universitat

t researcher based in London;

Iberts is an associate professor of the history of mathematics and comput-

ing at the Kortew de Vries Institute for Mathematics, Uni v of Amsterdam.
Nofre and Alberts’s contribution v e Software for
Europe project, as part of the European Science Foundation Euroc Program “In-
i and co-funded by the Netherlands Organization for entific Re-

tion and a 2009 Arthur L. Norberg Trav

The authors thank Eden M a for helpful

Matthias Dérries, Helena Durnovd, Hans

Edgar Daylight for insightful comments on its early ideas; and the three anonymous ref-
e and Suzanne Moon for providing constructive comments and suggestions. They
also thank Peggy Aldrich Kidwell for access to materials in the Computer Documenta-
tion Collection at the National Museum of American History, Smithsonian Institution,
Washington, D.C.

014 by the Society for the History of Technology. All rights reserved.
[40.




Creative origins of Smalltalk

"The purpose of the Smalltalk project
'S to provide computer support for the
creative spirit in everyone.”

"It 3 system is 1o serve the creative
SpIrit, It must be entirely
comprehensible to a single individual.”

Dan Ingalls (1981)




Interacting with Smalltalk

‘A user interface is simply a language in
which most of the communication is visual.”

‘Every component accessible to the user
should (...) present itself in a meaningful
way for observation and manipulation.”

Dan Ingalls (1981)




What killed Smalltalk?

Lack of a standard. "Each vendor had a slightly different version -
Nnot so much a different language, as a different platform.”

Deployment. "Smalltalk (...) computation takes place [in] a 'sea of
opjects. If you want to deploy an application by separating it from
the IDE (to (...) protect your IP) it turns out to be very hard.

Gilad Bracha (2020)



Whe ing I
re programming is still interacting?

v

————

Live_loop :fietsen do
sleep 0.25
sample :guit_end, rate: -1,
sleep 7.75







Conclusions

Making sense of programming past & future



Cultures of Programming

Are here to stay. After /0 years, it's not just a
sign of an immature field.

Interact in many ways. Clash over principles,
collaborate to improve programming practice.

Help us understand. Controversies of the past,
current debates on hiring, methodologies, etc.



Thank you!

\athematical, engineering, hacker,
DUSINESS and creative cultures
t0 make sense of programming!

NV AN
N NN
b W

. : . ?%#g /]
Tomas Petricek, University of Kent S &

tomas@tomasp.net | @tomaspetricek

NN

AN
A

V

N

L/
NN




