
Charles UniversityFaculty of Mathematics and Physics

Habilitation Thesis

2024 Tomas Petricek

Simple programming toolsfor data exploration
Tomas Petricek

Habilitation Thesis
Computer Science, Software Systems

Prague 2024

Acknowledgements

This thesis presents a selection ofmy recent research that focuses onmaking programmingtools for data exploration simpler. The origins of this research direction can be traced tomy involvement with the F# programming language. When Don Syme and the F# teamat Microsoft developed the first versions of the F# type provider mechanism, I started myfirst experiments that eventually led to the type providers for structured data presentedas one of the contributions in this thesis. However, seeing how easy working with data ina programming language can be led me to a further question: Could we make program-matic data exploration easy enough that it could be done by non-programmers? The risingpopularity of data journalism at the time provided a further practical motivation.The work presented in this thesis has been done at a number of institutions, startingtowards the end ofmy PhD at the University of Cambridge and finishing as I was joining theDepartment of Distributed and Dependable Systems (D3S) at the Faculty of Mathematicsand Physics. In between, I spent time at Microsoft Research in Cambridge, The Alan TuringInstitute in London and the University of Kent in Canterbury. I am grateful to all thoseinstitutions for enabling me to pursue my research vision.Although I am the first author of most of the work presented in this thesis, none ofit would be possible without the many collaborators that I was fortunate to meet alongthe way. Don Syme not only provided the initial motivation and collaborated with meon multiple papers but also became my long-term mentor and friend. The work relatedto F# received a warm welcome from the friendly F# community and early commercialadopters. Gustavo Guerra deserves special credit for turning F# Data from a prototype toa well-engineered (and widely adopted) package.At The Alan Turing Institute, I was fortunate to meet James Geddes who got me in-volved in the AI for Data Analytics (AIDA) project. The bridging of different worlds thatJamesmade possible resulted inmy involvement in research on notebooks and data prove-nance with Charles Sutton, but also work on automating data wrangling with Gerrit vanden Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz and Chris William. The AlanTuring Institute also provided initial funding for our joint work on data visualization toolswith Roly Perera.In addition to direct collaborators, the work presented in this thesis benefited fromnumerous discussions with my other colleagues and friends. This includes Dominic Or-chard and Stephen Kell first at the University of Cambridge and then at the University ofKent, Kenji Takeda, Jomo Fisher, and Keith Battocchi at Microsoft Research and May Yong,Nick Barlow, Brooks Paige at The Alan Turing Institute. Mathias Brandewinder, JonathanEdwards, Nour Boulahcen, Luke Church, Clemens Klokmose, Mariana Marasoiu and AlanBlackwell also provided ideas, insights, technical contributions and valuable feedback onsome of the works presented as part of this thesis.

3

Thework presented in this thesis also received valuable support from industrial collab-orators. My research focused on data journalism benefited from discussions with MeganLucero from The Bureau of Investigative Journalism. My work on F# was supported by thewide and enthusiastic F# community and also by Howard Mansell and BlueMountain Cap-ital. I had the pleasure of presenting many of the ideas at multiple industry conferences,including NDC in Oslo and London, LambdaDays and DevDay in Kraków, GOTO in Copen-hagen and Chicago, CogX London and, most recently, the F# Data Science conference inBerlin. These presentations were vital not only for enabling industry adoption of some ofthe systems presented in this thesis but also provided valuable feedback.Over time, the work has been financially supported in a number of ways. The GoogleDigital News Initiative provided me with a generous individual grant that allowed me tofully focus on programming tools for data journalism for one and a half years. MicrosoftResearch, BlueMountain Capital, the University of Kent, and Charles University paid forsome of my time over the years. At The Alan Turing Institute, I was supported by The UKRIStrategic Priorities Fund under EPSRC Grant EP/T001569/1, particularly the Tools, Practicesand Systems theme within that grant, through the UK Government’s Defence & SecurityProgramme and by The Alan Turing Institute under EPSRC grant EP/N510129/1. At CharlesUniversity, I was a part of the Department of Distributed and Dependable Systems and Iwas also supported by the PRIMUS grant PRIMUS/24/SCI/021.

Contents

Acknowledgements 3

Contents 4

I Commentary 8

1 Introduction 91.1 How data journalists explore data . 101.2 Requirements of simple tools for data exploration 111.3 Data exploration as a programming problem 121.4 Utilised research methodologies . 131.5 What makes a programming tool simple 141.6 Structure of the thesis contributions . 151.7 Research outlook . 18
2 Type providers 192.1 Information-rich programming . 202.2 Type providers for semi-structured data 212.2.1 Shape inference and provider structure 232.2.2 Relative safety of checked programs 242.2.3 Stability of provided types . 252.3 Type providers for query construction 262.3.1 Formalising lazy type provider for data querying 272.3.2 Safety of data acquisition programs 282.4 Contributions . 28
3 Data infrastructure 303.1 Notebooks and live programming . 313.2 Live data exploration environment . 323.2.1 Data exploration calculus . 333.2.2 Computing previews using a dependency graph 353.3 Live, reproducible, polyglot notebooks 373.3.1 Architecture of a novel notebook system 383.3.2 Dependency graphs for notebooks 393.4 Contributions . 40

5

4 Iterative prompting 424.1 Data wrangling and data analytics . 434.2 Iterative prompting . 444.2.1 Iterative prompting for data querying 454.2.2 Usability of iterative prompting 464.3 AI assistants . 474.3.1 Merging data with Datadiff . 484.3.2 Formal model of AI assistants 494.3.3 Practical AI assistants . 504.4 Contributions . 52
5 Data visualization 545.1 Visualisations to encourage critical thinking 555.2 Composable data visualisations . 565.2.1 Declarative chart descriptions 575.2.2 Rendering a Compost chart . 585.2.3 Functional abstraction and interactivity 585.3 Automatic linking for data visualizations 595.3.1 Creating linked visualizations using Fluid 605.3.2 Language-based foundation for explainable charts 625.3.3 Bidirectional dependency analyses 625.4 Contributions . 63

II Publications: Type providers 65

6 Types from data: Making structured data first-class citizens in F# 66

7 Data exploration through dot-driven development 81

III Publications: Data infrastructure 109

8 Foundations of a live data exploration environment 110

9 Wrattler: Reproducible, live and polyglot notebooks 147

IV Publications: Iterative prompting 152

10 The Gamma: Programmatic data exploration for non-programmers 153

11 AI Assistants: A framework for semi-automated data wrangling 161

V Publications: Data visualization 179

12 Composable data visualisations 180

13 Linked visualizations via Galois dependencies 199

VI Conclusions 229

14 Contributions and outlook 23014.1 Contributions to included publications 23014.2 Open-source software contributions . 23114.3 New look at data exploration . 23214.4 Towards programming systems research 233

Part I

Commentary

8

Chapter 1

Introduction

The rise of big data, open government data initiatives (Attard et al., 2015),1 and civic datainitiatives mean that there is an increasing amount of raw data available that can be usedto understand the world we live in, while increasingly powerful machine learning algo-rithms give us a way to gain insights from such data. At the same time, the general publicincreasingly distrusts statistics (Davies, 2017) and the belief that we live in a post-truth erahas become widely accepted over the last decade.While there are complex socio-political reasons for this paradox, from a merely tech-nical perspective, the limited engagement with data-driven insights should perhaps notbe a surprise. We lack accessible data exploration technologies that would allow non-programmers such as data journalists, public servants, and analysts to produce transparentdata analyses that can beunderstood, explored, and adaptedby a broad rangeof end-usersincluding educators, the public, and the members of the civic society.The technology gap is illustrated in Figure 1.1. On the one hand, graphical tools such asspreadsheets are easy to use, but they are limited to small tabular data sets, they are error-prone (Panko, 2015) and they do not aid transparency. On the other hand, programmatictools for data exploration such as Python and R can tackle complex problems but requireexpert programming skills for completing even the simplest tasks.

Figure 1.1: The gap between programming and spreadsheets – spreadsheets can be used by manypeople, but solve problems of a limited complexity. Programming scales arbitrarily, but has a highminimal complexity limiting the number of users. Adapted from Edwards (2015).
1See https://data.gov and https://data.gov.uk, but also https://opendata.gov.cz as examples.

9

https://data.gov
https://data.gov.uk
https://opendata.gov.cz

Figure 1.2: A visualization comparing the number of gold Olympic medals won by Michael Phelpswith countries that won a close number of gold medals. Inspired by e.g., Myre (2016)

The above illustration should not be taken at face value. Although there is no singleaccepted solution, there are multiple projects that exist in the gap between spreadsheetsand programming tools. However, the gap provides a useful perspective for positioningthe contributions presented in this thesis. Some of the work I present develops novel toolsthat aim to combine the simplicity of spreadsheets with the power of programming for thespecific domain of data exploration, aiming to fill the space in the middle of the gap. Someof the work I present focuses on making regular programming with data easier, or makingsimple programming with data accessible to a greater number of users, reducing the sizeof the gap on the side of programming.
1.1 How data journalists explore data

To explain themotivation behind this thesis, I use an example data exploration done in thecontext of data journalism (Bounegru and Gray, 2021). Following the phenomenal successof the swimmer Michael Phelps at the 2016 Olympic games, many journalists producedcharts such as the one in Figure 1.2, which puts Phelps on a chart showing countries withsimilar numbers of medals. Even such a simple visualization raises multiple questions. Isthe table counting Gold medals or all medals? How would it change if we used the othermetric? What would it look like if we added more countries or removed the historical“Mixed Team”? How many top countries were skipped?This simple example illustrates two challenges that I hinted at earlier. First, producingthis visualization may not be hard for a programmer, but it involves a number of trickyproblems for a non-programmer. The author has to acquire and clean the source data,aggregate medals by country and join two subsets of the data. Doing so manually in aspreadsheet is tedious, error-prone and not reproducible, but using Python or R requiresnon-trivial programming skills. Second, the non-technical reader of the newspaper articlemay want to answer the above follow-up questions. Data journalists sometimes offer adownload of the original dataset, but the reader would then have to redo the analysisfrom scratch. If the data analysis was done in Python or R, they could get the source code,but this would likely be too complex to modify.This thesis presents a range of tools that allow non-programmers, such as data jour-nalists, to clean and explore data, such as the table of Olympic medals, and produce data

1 let data = olympics.’group data’.’by Team’.’sum Gold’.then
2 .’sort data’.’by Gold descending’.then
3 .paging.skip(42).take(6)
4 .’get series’.’with key Team’.’and value Gold’
5
6 let phelps = olympics.’filter data’.’Athlete is’.’Michael Phelps’.then
7 .’group data’.’by Athlete’.’sum Gold’.then
8 .’get series’.’with key Athlete’.’and value Gold’
9
10 charts.bar(data.append(phelps).sortValues(true))
11 .setColors(["#94c8a4","#94c8a4","#94c8a4","#e30c94"])

Figure 1.3: Source code of the data analysis used to produce the visualization in Figure 1.2. The casestudy is based on the work presented in Chapter 10.

analyses that are backed by source code in a simple programming language that can beread and understood without sophisticated programming skills. In some cases, the codecan be produced interactively, by repeatedly choosing one from a range of options offeredby the tool and can then be modified to change the parameters of the visualization.As an example, the source code of the data analysis used to produce the visualizationabove is shown in Figure 1.3. The tools that enable non-programmers to create it will bediscussed later. The key aspect of the code is that it mostly consists of a sequence ofhuman-readable commands such as ’filter data’.’Athlete is’.’Michael Phelps’.Those are iteratively selected from options offered by the system and so the author of thedata analysis can complete most of the analysis without writing code.The use of a simple programming language also makes it possible to understand thekey aspects of the logic. The analysis counts the number of gold medals (’sum Gold’),skips 42 countries before the ones shown in the visualization, and does not filter out anyother data. Finally, the code can be easily executed (in aweb browser), allowing the readerto easily make small changes, such as picking a different athlete or increasing the numberof displayed countries. Such engagement has the potential to aid the reader’s positiveperception of open, transparent data-driven insights based on facts.
1.2 Requirements of simple tools for data exploration

Although the tools and techniques presented in this thesis aremore broadly applicable, thefocus of this thesis is on a narrower domain illustrated by the above motivating example. Ifocus on programmatic data exploration tools that can be used to produce accessible andtransparent data analyses that will be of interest to a broader range of readers and allowthem to critically engage with the data.In the subsequent discussion, I thus distinguish between data analysts who producethe analyses and readerswho consume and engage with the results. The former are tech-nically skilled and data-literate, but may not have programming skills. The latter are non-technical domain expertswhomay nevertheless be interested in understanding and check-ing the analysis or modifying some of its attributes. This context leads to a number ofrequirements for the envisioned data exploration tools:

• Gradual progression from simple to complex. The system must allow non-program-mers with limited resources to easily complete simple tasks in an interface that al-lows them to later learn more and tackle harder problems. In the technical dimen-sions of programming systems framework (Jakubovic et al., 2023), this is describedas the staged levels of complexity approach to the learnability dimension.
• Support transparency and openness. The readers of the resulting data analysesmustbe able to understand how the analysis was done and question what processingsteps and parameters have been used in order to critically engage with the problem.
• Enable reproduction and learning by percolation. A reader should be able to seeand redo the steps through which a data exploration was conducted. This lets themreproduce the results, but also learn how to use the system. As noted by Sarkar andGordon (2018), this is how many users learn the spreadsheet formula language.
• Encourage meaningful reader interaction. The reader should not be just a passiveconsumer of the data analyses. They should be able to study the analysis, but alsomake simple modifications such as changing analysis or visualization parameters, asis often done in interactive visualizations by journalists (Kennedy et al., 2021).
The criteria point to the technology gap illustrated by Figure 1.1 and there are multi-ple possible approaches to satisfy the criteria. This thesis explores one particular point inthe design space, which is to treat data analysis as a program with an open source code,created in a simple programming language with rich tooling.As I will show, treating data exploration as a programming problemmakes it possible tosatisfy the above criteria. Gradual progression from simple to complex can be supportedby a language that provides very high-level abstractions (or domain-specific languages)for solving simple problems. Transparency, openness, and reproducibility are enabled bythe fact that the source code is always available and can be immediately executed whilelearning by percolation can be supported by structuring the program as a sequence oftransformations. Finally, meaningful interaction can be offered by suitable graphical toolsthat simplify editing of the underlying source code.

1.3 Data exploration as a programming problem

Data exploration is typically done using a combination of tools including spreadsheets, pro-gramming tools, online systems, and ad-hoc utilities. Spreadsheets like Excel and businessintelligence tools like Tableau (Wesley et al., 2011) are often used for manual data editing,reshaping, and visualization. More complex and automated data analyses are done in pro-gramming languages like R and Python using a range of data processing libraries such aspandas and Tidyverse (Wickham et al., 2019). Such analyses are frequently done in a com-putational notebook environment such as RStudio or Jupyter (Kluyver et al., 2016), whichmake it possible to interleave documentation, mathematical formulas and code with out-puts such as visualizations. Online data processing environments like Trifacta provide myr-iads of tools for importing and transforming data, which are accessible through differentuser interfaces or programmatically, but even those have to be complementedwith ad-hocsingle-purpose tools, often invoked through a command line interface. Finding a unifiedperspective for thinking about such a hotchpotch of systems and tools is a challenge.

 Key novel perspective. In this thesis, I propose to view systems and tools usedfor data exploration as programming tools. This view can offer a unified perspec-tive on a broad range of systems and tools. It also enables us to apply the powerfulmethodology of programming languages research to the problemof data exploration.
If we look at data exploration tools from the perspective of programming languages re-search, we can adapt and leverage techniques for ensuring program correctness and com-positional design, as well as rich interaction principles. However, the programs that areconstructed during data exploration have a number of specific characteristics that distin-guish them from programs typically considered in programming language research:

• Data exists alongside code. Systems such as spreadsheets often mix data and codein a single environment. In conventional programming, this is done in image-basedsystems like Smalltalk, but not in the context of programming languages.
• Concrete inputs are often known. Moreover, data exploration is typically done on aknown collection of concrete input datasets. This means that program analysis cantake this data into account rather than assuming arbitrary unknown inputs.
• Programmers introduce fewer abstractions. Even in programmatic data explorationusing R or Python in a Jupyter notebook, data analysts often write code as a se-quence of direct operations on inputs or previously computed results, rather thanintroducing abstractions such as reusable generic functions.
• Most libraries are externally defined. Finally, data exploration is often done usinglibraries and tools that are implemented outside of the tool that the analysts use. Forexample, spreadsheet formulas use mostly built-in functions, while data analyses inPython often use libraries implemented in C/C++ for performance reasons.
The above holds for simple data explorations, such as those done by data journaliststhat this thesis is concerned with. The characteristics do not apply to all programs thatworkwith data. Reusable and parameterizedmodels, general-purpose algorithms and richdata processing pipelines share structure with conventional programs. However, focusingon simple data explorations for which the above criteria are true allows us to narrow thedesign space and study a range of interesting problems. The narrow focus also makes usrethink a number of accepted assumptions in programming language research, such aswhat are the key primitives of a programming language (in Chapter 8, an invocation of anexternal function becomes more important than lambda abstraction).

1.4 Utilised research methodologies

The research presented in this thesis tackles multiple research questions such as: Doesa particular language design rule out certain kinds of programming errors? What is anefficient implementation technique for a particular language or a tool? Does a newly de-veloped tool simplify data exploration by reducing the number of manual interventions bythe user? What is a suitable interaction mechanism for completing a particular task? Andcan non-programmers effectively use such interaction mechanism? The diversity of theresearch questions calls for a corresponding diversity of research methodologies.

Programming language theory. The first methodology used in this thesis is that of theo-retical programming language research. When using this methodology, a core aspect of aprogramming language is described using a small, formally tractable mathematical modelthat captures the essential properties of the aspect. The model is then used to formallystudy properties of the given aspect, such as whether a programming language that im-plements it can be used to write programs that exhibit a certain kind of incorrect behavior.In this thesis, Part II presents two instances of a programming language extensionmechanism called type providers. To show that code written using type providers willnever result in a particular error condition, I develop a formal model of type providersand prove a correctness property using the model. The actual system implementationthen closely follows the formal model. Theoretical programming language research meth-ods are also used to develop a data visualization language in Chapter 13, to formalize theoptimization technique introduced in Chapter 8 and to define the structure of the semi-automatic data wrangling tools developed in Chapter 11.
Programming systems. The theoretical approach is complemented by a range of appliedprogramming systems methods. The work using those methodologies often focuses ondesigning suitable system architecture, empirical evaluation of measurable characteristicsof the system such as efficiency. It should also be complemented with an open-sourceimplementation and/or a reproducible software artifact.I use the programming systems research methodology primarily in Chapter 9, whichpresents the architecture and implementation of a novel computational notebook systemfor data science. Chapter 8 develops an optimized programming assistance tool and eval-uates the efficiency empirically. Software systems and libraries presented in this thesis areavailable as open-source and are listed below.
Human-computer interaction. Finally, answering questions that concern usability re-quires a human-centric approach offered by the human-computer interaction (HCI) re-search methodology, which is increasingly used to study programming languages and sys-tems (Chasins et al., 2021). The HCI methods include controlled usability studies, qualita-tive and quantitative user studies, as well as the development and application of heuristicevaluation frameworks.I use the HCI methodology in Chapter 10, which introduces the “iterative prompting”interaction mechanism and conducts a usability study with non-programmers to evaluatewhether they can use it to complete simple data exploration tasks. Chapter 12, whichpresents a novel data visualization library, also draws on the HCI methodology, but uses acomprehensive case study instead of a user study to evaluate the design.
1.5 What makes a programming tool simple

The very title of this thesis refers to the aim of creating programming tools for data explo-ration that are simple. However, simplicity is difficult to quantify precisely. It is understooddifferently by different communities and in different contexts. I thus follow the recommen-dation ofMuller and Ringler (2020) tomake explicit how the term should be understood inthe context of this thesis. The notion of simplicity is used as a unifying theme in this com-mentary. In the papers presented as part of this thesis, the notion takes one of severalmore specific and rigorously evaluated forms:

• In the context of user-centric work, I refer to a system as simple if it allows non-programmers to complete tasks that are typically limited to programmers. This isthe casewhen discussing the iterative prompting interaction principle in Chapters 10the live programming tools in Chapter 8.
• In the context of programming language or library design, I consider the design sim-
ple when it allows expressing complex logic using a small set of highly composableprimitives that are easy to understand. This applies to the language design in Chap-ter 7 and visualization library design in Chapter 12.

• In the context of programmer assistance tools, simple indicates that the user doesnot have to perform a task that they would otherwise have to complete manually.This applies to AI assistants, presented in Chapter 11, which relieve the user fromtedious manual setting of parameters by partly automating the task.
• Finally, I also use the term simple when talking about programming systems andlibraries that provide a high-level interface designed specifically for a particular task.This is the case for the notebook system presented in Chapter 9, data access libraryin Chapter 6, and the language for creating visualizations in Chapter 13. Using suchhigh-level abstractions means that programmers have to write less code.
The overarching theme of this thesis is thus the design of programming tools for dataexploration that are simple in one or more of the meanings of the term indicated above.The focus on simplicity aims to fill or reduce the technology gap illustrated in Figure 1.1and, ultimately, make data exploration accessible to a broader range of users.

1.6 Structure of the thesis contributions

The key novel perspective—to view data exploration tools from the perspective of pro-gramming language research—can be leveraged for a wide range of different data explo-ration tools, including tools for data acquisition, data cleaning and data visualization. Cor-respondingly, the contributions presented in this thesis cover multiple different kinds oftasks that a data analyst faces when they work with data.To position the contributions in the broader context of data analytical work, it is usefulto see where they fit in a typical data science lifecycle. For this thesis, it is useful to con-sider a variant of the lifecycle that distinguishes between the exploration and productionphases as done by Jain and Kushagra (2022) as well as IBM (2020). As shown in Figure 1.4,the contributions of this thesis focus on thework done in the initial data exploration phase.Unlike with the later production phase, the programs used in the exploration phase typi-cally exhibit the unique characteristics discussed in Section 1.3.The data science lifecycle starts with data acquisition (1), which involves loading datafrom a range of sources. This is followed by data cleaning (2), where multiple data sourcesare joined, incomplete data is filled or removed and data structure is recovered. In dataexploration (3), the analyst transforms the data to discover interesting patterns and, finally,in data visualization (4) they produce charts to present their insights. In the productionphase, the insights are then used to develop a model that becomes a part of a productionsystem. The process can be repeated based on the results of the model evaluation.

Figure 1.4: Illustration showing the data science lifecycle, as understood by , alongside with thecontributions of this thesis to the individual steps of the data exploration phase.

The work that constitutes this thesis contributes to each of the four steps of the dataexploration phase. In Part II, I present two papers on type providers, which simplify dataacquisition, while Part V consists of two novel data visualization systems. The four pub-lications presented in Part III and Part IV all focus on working with data, including datacleaning and exploration. They are not grouped in parts based on the lifecycle step butbased on their research methodology. The publications in Part III use programming sys-tems methods to design new infrastructure, while Part IV introduces a novel interactionprinciple and applies it to two problems, one from the domain of data exploration and onefrom the domain of data cleaning. The rest of this section summarises the contributionsof the work presented in this thesis in more detail.
Type providers. The type provider mechanism (Syme et al., 2012, 2013) makes it pos-sible to integrate external data into a statically-typed programming language. The workpresented in Part II presents two new type providers.Chapter 6 presents a library of type providers that makes it possible to safely accessstructured data in formats such as CSV, XML, and JSON in the F# programming language.The two key research contributions of thework are, first, a novel inferencemechanism thatinfers a type based on a collection of sample data and, second, a formulation of a relative
safety property that formally captures the safety guarantees offered by the system.Chapter 7 takes the idea of type providers further. It uses the mechanism not just fordata access, but for the construction of SQL-like queries over tabular data. The researchcontribution is a novel type provider, implemented in TheGamma system, which generatesa type that can be used to group, filter, and sort tabular data. Using a novel formal model,the presented paper shows that all queries constructed using the type provider are valid.
Data infrastructure. Programmatic data exploration is typically done in notebook sys-tems such as Jupyter (Kluyver et al., 2016) that make it possible to combine documenta-tion, formulas, code, and output such as visualizations. Notebook systems are a conve-nient tool, but they suffer from a number of limitations and issues. The two novel systemspresented in Part III address several of those.

Chapter 8 presents a programming environment for The Gamma that makes data ex-ploration easier by providing instant feedback. The research contributions of the work aretwofold. First, it builds a practical efficient algorithm for displaying live previews. Second,it develops a formal model of code written to explore data called data exploration calculusand uses it to show the correctness of the live preview algorithm.Chapter 9 tackles more directly the problems of notebook systems. It presents Wrat-tler, which is a novel notebook system that makes it possible to combine multiple pro-gramming languages and tools in a single notebook resolves the reproducibility issues ofstandard systems and stores computation state in a transparent way, allowing for precisedata provenance tracking.
Iterative prompting Treating data analyses as programsmakes them transparent and re-producible, but writing code has an unavoidable basic complexity. Part IV presents a novelinteraction principle for program construction called iterative prompting. The mechanismis rooted in the work on type providers and makes it possible to construct programs byrepeatedly choosing from one of several options.Chapter 10 introduces the iterative prompting mechanism from the human-computerinteraction perspective. It shows that the mechanism can be used to construct programsthat explore data inmultiple input formats including tables, graphs and data cubes. The us-ability of themechanism is evaluated through a user study, showing that non-programmerscan use it to complete a range of data exploration tasks.Chapter 11 uses the iterative prompting mechanism as the basis of a range of semi-automatic data cleaning tools. It augments existing AI tools for parsing data, merging data,inferring data types and semantic information with a mechanism that lets the user guidethe AI tool. Using iterative prompting, the user can correct mistakes and configure theparameters of the tool. The augmented tools are evaluated empirically, showing that thecorrect result can typically be obtained with 1 or 2 manual interventions.
Data visualization. Data visualization is the last step in the exploratory phase of the datascience lifecycle discussed above. Although standard charts are typically easy to build, cre-ating richer interactive visualizations is a challenging programming task. Part V presentstwo systems that make it easier to build interactive data visualizations that encourage crit-ical thinking about data.Chapter 12 presents a functional domain-specific language for creating charts thatmakesit possible to compose rich interactive charts from basic building blocks (such as lines andshapes) using a small number of combinators (such as overlaying and nesting of scales).The simplicity of the approach is illustrated through a range of examples and confirmed bythe publication of the work as a so-called functional pearl (Gibbons, 2010).Chapter 13 introduces a language-based program analysis technique that makes it pos-sible to automatically build linked data visualizations that show the relationships betweenparts of charts produced from the same input data. The key research contribution is anovel bidirectional dynamic dependency program analysis, which is formalized and shownto have a desirable formal structure. The technique is used as the basis for a high-levelprogramming language Fluid.

ö Key novel perspective. A close look at howdata scientists interactwith program-ming tools forces us to rethink how we conceptualize programming. It showsthat we need to shift our attention from static programming languages to rich, state-ful, and interactive programming systems. Understanding the theory and practice ofthose remains an interesting open problem.

1.7 Research outlook

Viewing data exploration from the perspective of programming language research is ben-eficial in both directions. Most of this thesis is concerned with the novel data explorationtools and systems that become conceivable as a result of this perspective. However, anequally interesting question is whether data exploration forces us to think about (conven-tional) programming differently. I believe this is the case.As noted earlier, data scientists often work with concrete data that exists alongsidewith code. This is an approach that has existed in image-based programming systems sincethe era of Smalltalk. They also often interleave coding with execution, which is how mostmodern programs are constructed. Although many programming environments discardany state of the executing program, hot-reloading is increasingly used to make sure pro-grammers do not lose state while editing code.Most contemporary programming language research focuses solely on languages andignores such stateful aspects of programming systems, possibly due to the paradigm shiftdocumented by Gabriel (2012). This ignores an important aspect of the reality of modernprogramming. Moreover, the new capabilities presented in this thesis in the context ofdata science suggest that the programming systems perspective has the potential to yieldfruitful results about programming in a broader sense. This is also an area that I startedexploring in recent years in joint work with Jakubovic et al. (2023); Edwards and Petricek(2021); Edwards et al. (2025).

Chapter 2

Type providers

The first step of the data science lifecycle outlined in the previous chapterwas data acquisi-tion. This typically involves reading data in semi-structured formats such as CSV, XML, andJSON or retrieving data from a database. The aim of the work on type providers, outlinedin this chapter, is to make programmatic data acquisition reliable and simpler.The lack of reliability arises primarily from the fact thatmost data access code iswrittenin dynamically-typed scripting languages. This is largely because using such languages iseasier. A dynamically-typed language does not need to consider the structure of the inputdata to check that the program accesses it correctly. If we retrieve a JSON object thatrepresents a recordwith fields title and link andparse it into anobject item in JavaScript,we can then access the fields using just item.title and item.link. The fields will exist atruntime, but the language does not need to know at compile-time whether they will beavailable, because member access is not statically checked.In statically-typed programming languages, the situation is no better. The typical ap-proach, illustrated in Figure 2.1, is equally dynamic, but more verbose. Object fields areaccessed using a string-based lookup, which can easily contain fields that do not exist atruntime (indeed, there is an uncaught typo on line 6!) and, moreover, the lookup has tobe done using an additional method invocation andmay require tedious type conversions.The first challenge we face is how tomake accessing data in semi-structured formats, suchas JSON, XML, and CSV, as simple as in dynamically-typed languages (a matter of just usinga dot), but support checking that will statically guarantee that the accessed fields will bepresent at runtime.However, the simplicity of data access in dynamic scripting language also has its limits.It is easy to access individual fields, but the code gets more complicated if we want toperform a simple query over the data. Consider, for example, the query in Figure 2.2.
1 var url = "http://dvd.netflix.com/Top100RSS";
2 var rss = XDocument.Load(topRssFeed);
3 var channel = rss.Element("rss").Element("channel");
4
5 foreach(var item in channel.Elements("item")) {
6 Console.WriteLine(item.Element("titel").Value);
7 }

Figure 2.1: Printing titles of items from an RSS feed in C#. The snippet uses dynamic lookup to findappropriate elements in the XML and extracts and prints the title of each item.

19

1 olympics = pd.read_csv("olympics.csv")
2 olympics[olympics["Games"] == "Rio (2016)"]
3 .groupby("Athlete")
4 .agg({"Gold": sum})
5 .sort_values(by="Gold", ascending=False)
6 .head(8)

Figure 2.2: Data transformation written using pandas in Python. The code loads a CSV file withOlympic medal history, gets data for Rio 2016 games, groups the data by the athlete, and sumstheir number of gold medals and, finally, takes the top 8 athletes.

Despite being widely accepted as simple, the Python code snippet involves a remark-able number of concepts and syntactic elements that the user needs to master:
• Generalised indexers (.[condition]) are used to filter the data. This is furthercomplicated by the fact that == is overloaded towork on a data series and the indexeraccepts a Boolean-valued series as an argument.
• Python dictionaries ({"key": value}) are here used not to specify a lookup table,but to define a list of aggregation operations to apply on individual columns. It alsodetermines the columns of the returned data table.
• Well-known names. The user also has to remember the (somewhat inconsistentlynamed) names of operations such as groupby and sort_values and remember thecolumn names from their data source such as "Athlete".
To make data acquisition simpler, the user should not need this many concepts andthey should not need to remember the names of operations or the names of columnsin their data source. Moreover, their code should be checked to ensure that it accessesthe correct supported operations and applies them to compatible data that exist in thedata source. As I will show later, this can be achieved using type providers, a concept thatoriginated in the F# programming language in the early 2010s.

2.1 Information-rich programming

In the 2010s, applications increasingly relied on external data sources and APIs for theirfunction. The typical solution for accessing such data was either to use a scripting lan-guage, a dynamic access library (both illustrated above), or a code-generation tool thatwould generate code for accessing the data source or anAPI (althoughonly for data sourceswith small enough schema). This provided the motivation for the type provider mecha-nism in F# (Syme et al., 2012, 2013), which made it possible to make the type checker in astatically-typed programming language aware of the structure of external data sources.Technically, a type provider in F# is an extension that is executed by the compiler atcompile-time. A type provider can run arbitrary code, such as accessing a database schemaor another external data source. It then generates a representation of a type that is passedto the compiler and used to check the user program. For example, the World Bank typeprovider (Figure 2.3) retrieves the list of known countries and indicators from the WorldBank database (by querying the REST API provided by the World Bank) and generates acollection of types. The WorldBank type has a GetDataContextmethod, which returns an

1 type WorldBank = WorldBankDataProvider<"World Development Indicators">
2 let data = WorldBank.GetDataContext()
3
4 data.Countries.‘‘United Kingdom‘‘.Indicators
5 .‘‘Central government debt, total (% of GDP)‘‘

Figure 2.3: TheWorld Bank type provider (Syme et al., 2012) provides access to indicators collectedby theWorld Bank. The countries and indicators aremapped to properties (members) of an F# classthat represents the data.
instance of a type with the Countriesmember and the type returned by this member hasone member corresponding to each country in the World Bank database. The World Banktype provider, created by the author of this thesis and presented in a report (Syme et al.,2012) not included here, shows two important properties of type providers:

• Static type provider parameters. A type provider in F# can take literal values (suchas "World Development Indicators") as parameters. They can be used when theprovider is executed (at compile-time) to guide how types are generated. Here, theparameter specifies a particular database to use as the source. These can be namesof files with schema, connection strings or live URLs.
• Lazy type generation. The types generated by a type provider are generated lazily,i.e., the members of a type (and the return types of those members) are only gen-erated when the type checker encounters the type in code. This makes it possibleto import very large (potentially infinite) external schema into the type system.
There are other interesting aspects of type providers, but the above two features arecrucial for the work included in this thesis. In the following two sections, I review thekey contributions to type providers presented in Part II make data acquisition reliable andsimpler. The work on type providers included in this thesis develops two kinds of typeproviders. The type providers for CSV, JSON, and XML packaged in the F# Data librarymakeit possible to access data in a statically-checked way using ordinary member access. Thework also makes two theoretical contributions, an algorithm for schema inference fromsample data and a programming language theory of type providers.The pivot type provider, developed for the experimental programming language TheGamma, makes it possible to construct queries such as that shown in Figure 2.2 (and wasmentioned briefly in Section 1.1). It adapts the theory developed for the F# Data typeproviders to show that only correct queries can be constructed when using it. The fullaccount of the work can be found in Chapter 6 and Chapter 7, respectively. The followingprovides an accessible high-level overview of the contributions.

2.2 Type providers for semi-structured data

The F# Data library implements type providers for accessing data in XML, JSON, and CSVformats. It is based on the premise that most real-world data sources using those formatsdo not have an explicit schema. The type providers thus infer the schema froma sample (ora collection of samples). The inferred schema is then mapped to F# types through whichthe user of the type provider can access the data.

1 // worldbank.json - a sample response used for schema inference
2 [{ "page": 1, "pages": 1, "per_page": "1000", "total": 53 },
3 [{ "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },
4 "country": { "id": "CZ" },
5 "date": "2011", "value": null },
6 { "indicator": { "id": "GC.DOD.TOTL.GD.ZS" },
7 "country": { "id": "CZ" },
8 "date": "2010", "value": 35.1422970266502 }]]

1 // demo.fsx - a data acquisition script using a type provider
2 type WB = JsonProvider<"worldbank.json">
3 let wb = WB.Load("http://api.worldbank.org/.../GC.DOD.TOTL.GD.ZS?json")
4
5 printf "Total: %d" wb.Record.Total
6 for item in wb.Array do
7 match item.Value with
8 | Some v -> printf "%d %f" item.Date v
9 | _ -> ()

Figure 2.4: Using the .JSON type provider for accessing data from a REST API. The inference uses alocal sample file, while at runtime, data is obtained by calling the live service.

The example shown in Figure 2.4 illustrates one typical use. Here, the user is accessinginformation from a service that returns data as JSON (incidentally, the service is also theWorld Bank, but here we treat it as an ordinary REST service). The user stored a local copyof a sample response from the service (worldbank.json) and uses it as a static parameterfor the JSON type provider (line 2). They then load data from the live service (line 3) andprint the total number of items (line 5) as well as each year for which there is a value (line8). Three aspects of the type provider deserve particular attention:
• Real-world schema inference is hard. Here, the response is an array always contain-ing two items, a record with meta-data and an array with individual data points. Thedata records have a consistent structure, although some values may be null.
• Inference needs to be stable. The type providers allow adding further samples. If theuser adds further examples, the structure of the provided types should change in apredictable (and limited) way so that the user code can be easily updated.
• Safety guaranteed by static checks is relative. Static type checking guarantees thatonly data available in the sample input can be accessed in user code, but if the dataloaded at runtime has a different structure, this will not prevent errors. We thusneed to specify what exactly can the system guarantee about programs.
The F# Data type providers, presented in full in Chapter 6 offer an answer to all ofthese three challenges. They can infer the shape of real-world data, infer types with astable structure, and capture the runtime guarantees formally through the relative safetyproperty. The publication also presented novel programming language theory thatmade itpossible to analyze typeproviders formally, which I briefly review in the next three sections.

2.2.1 Shape inference and provider structure

When the type provider for semi-structured data is used, it is given a sample of data thatcan be analyzed at compile time (such as the "worldbank.json" file name above). It usesthis to infer the shape of the data. A shape is a structure similar to a type and is composedfrom primitive shapes, record shapes, collections, and a few other special shapes:
σ̂ = ν {ν1 :σ1, . . . , νn :σn}
| float | int | bool | string

σ = nullable σ̂ | [σ] | any | null | ⊥

The inferencedistinguishes betweennon-nullable shapes (σ̂) andnullable shapes (σ), whichcan be inferred even when the collection of inputs contains the null value. The formerconsists of primitive shapes (inferred from a corresponding value) and a record shape. Therecord shape has an (optional) name ν and consists of multiple fields that have their ownrespective shapes. A record is the shape inferred for JSON objects, but also XML elementscontaining attributes and child elements. A non-nullable shape can be made nullable byexplicitly wrapping it as nullable σ̂ . Other nullable shapes include collections (a nullvalue is treated as an empty collection) and shapes that represent any data, only null val-ues, and the bottom shape ⊥, representing no information about the shape. The abovedefinition does not include the handling of choice shapes (corresponding to sum types),which is introduced later.A key technical operation of the shape inference is expressed using the common pre-
ferred shape function written as σ1▽σ2 = σ. Given two shapes, the function returns ashape the most specific shape that can be used to represent the values of both of the twogiven shapes. The details are discussed later, but it is worth illustrating how the functionworks using two examples.

• int▽ float = float In this case, the common preferred shape is float. Thismay lead to a loss of precision, but it makes accessing the data easier than if weinferred a shape representing a choice shape. This is one example where the systemfavors practical usability over formal correctness.
• {x : int}▽ {x : int, y : int} = {x : int, y : nullable int } In this case, thecommon preferred shape is a record where the field that was missing in one of theshapes ismarked as nullable. In general, the systemaims to infer recordswheneverpossible, which is the key for the stability of inferred types discussed below.
When the type provider is used, it receives a sample data value and uses it to infer theexpected shape of data. A data value is modeled formally as a value that can be either aprimitive value (integer i, floating-point value f , string s, a Boolean or null), a collectionof values or a record with fields that have other values:

d = i | f | s | true | false | null
| [d1; . . . ; dn] | ν {ν1 7→ d1, . . . , νn 7→ dn}

The shape inference is then defined as a function S(()d1, . . . , dn) = σ that takes a collec-tion of data values and infers a single shape σ that represents the shape of all the specifiedvalues. (Note that this can always be defined. In cases where values are of incompatibleshape, the system infers the shape any.)

S(i) = int S(null) = null S(true) = bool
S(f) = float S(s) = string S(false) = bool

S([d1; . . . ; dn]) = [S(d1, . . . , dn)]

S(ν {ν1 7→ d1, . . . , νn 7→ dn}) = ν {ν1 : S(d1), . . . , νn : S(dn)}
S(d1, . . . , dn) = σn where σ0 = ⊥, ∀i ∈ {1..n}. σi−1▽S(di) ⊢ σi

The shape inference is primarily defined on individual data values. For those, the systeminfers the shape corresponding to the value. For lists, we infer the shape based on all thevalues in the list. Finally, the last rule handlesmultiple sample data values by inferring theirindividual shapes and combining them using the ▽ function.The last aspect of the formal programming language model of type providers is thelogic that, given an inferred shape, produces the corresponding F# type. To explain theimportant properties of type providers, we do not need to elaborate on what an F# type ishere, but themost important case is a class withmembers (properties ormethods). A typeprovider takes the inferred shape and produces an F# type τ for the shape, a collection ofclasses L that may appear in τ (typically as types of members in case τ is a class). Thetype provider also needs to generate code that turns a raw data value d passed as input atruntime into a value of the provided type τ , which is represented as an expression e:
JσK = (τ, e, L) (where L, ∅ ⊢ e : Data→ τ)

The mapping JσK takes an inferred shape σ and returns a triple consisting of an F# type τ ,a function turning a data value into a value of type τ and a collection of classes L.This brief overview of the formal model of type providers for semi-structured datamakes it possible to formulate the two key results about the F# Data type providers. Thefirst describes the relative type safety of programs written using a type provider and is anovel variation on the classic type safety property of programming language research. Thesecond describes the stability of provided types and concerns the usability of the system.
2.2.2 Relative safety of checked programs

The aim of type systems, in general, is to ensure that programswhich passed type checkingdo not contain a certain class of errors. This has been characterised by Milner (1978) usinga famous slogan “Well typed programs do not gowrong” (withwrong being a formal entityinMilner’s system). A codewritten using a type provider can gowrong if the input obtainedat runtime is of a structure that does notmatch the structure of the input used as a samplefor shape inference at compile time.However, thanks to the formal model defined above, the property can be specifiedprecisely, and most importantly, we can specify for which inputs the programs writtenusing a type provider will never fail because of invalid data access. The definition relieson a preferred shape relation ⊑, which captures the fact that one shape is more specificthan another (if σ1 ⊑ σ2 then σ1▽σ2 = σ2). The theorem is also defined in terms of the
⇝ operation, which captures the operational semantics of the programs of the languageused in the formal model. The relation e1 ⇝ e2 specifies that an expression e1 reduces to
e2 in a single step (and⇝∗ is the transitive closure of⇝).

Theorem 1 (Relative safety). Assume d1, . . . , dn are samples, σ = S(d1, . . . , dn) is an
inferred shape and τ, e, L = JσK are a type, expression, and class definitions generated by
a type provider.

For all inputs d′ such that S(d′) ⊑ σ and all expressions e′ (representing the user code)
such that e′ does not contain any of the dynamic data operations op and any Data values
as sub-expressions and L; y : τ ⊢ e′ : τ ′, it is the case that L, e[y ← e′ d′] ⇝∗ v for some
value v and also ∅;⊢ v : τ ′.

In other words, the relative safety property specifies that, for any program that theuser may write using a type provider (without using low-level functions that are only ac-cessible inside a type provider), if the program is executed with any input whose shape ismore specific than the shape inferred from statically known samples, the programwill notencounter a data-related runtime error. It is, of course, still possible for runtime errors tohappen, but not with a well-chosen sample and, as the wide-ranging adoption of the F#Data library suggests,1 this is often a sufficient guarantee in practice.
2.2.3 Stability of provided types

When the user of an F# Data type provider gets a runtime error, this is because the datasource they use produces an input of a structure not encountered before. A typical exam-ple is an input that includes null in a field that previously always had a value. Such errorsare inevitable (without an explicit schema). The programmer can handle this by addingthe new input as a new sample to the collection of samples used for the shape inference.If they do so, the type provider will provide a new different type. In this case, an im-portant property of the system is that the newly provided type will have the same generalstructure as the type provided before. This means that the data processing code, writtenusing the provided type, will be easy to adapt. The programmer will need to add handlingof a missing value, but they will not have to restructure their code. (A system based onstatistical analysis of similarity would not have this property as a small change in the inputmay affect a decision whether two shapes are sufficiently similar to be unified into a singletype.) Using the formal model, we can capture this property (and later prove that it holdsfor the F# Data type providers).
Theorem2 (Stability of inference). Assumewehave a set of samples d1, . . . , dn, a provided
type based on the samples τ1, e1, L1 = JS(d1, . . . , dn)K and some user code e written
using the provided type, such thatL1;x : τ1 ⊢ e : τ . Next, we add a new sample dn+1 and
consider a new provided type τ2, e2, L2 = JS(d1, . . . , dn, dn+1)K.

Now there exists e′ such that L2;x : τ2 ⊢ e′ : τ and if for some d it is the case that
e[x ← e1 d] ⇝ v then also e′[x ← e2 d] ⇝ v. Such e′ is obtained by transforming
sub-expressions of e using one of the following translation rules:

(i) C[e] to C[match e with Some(v)→ v | None→ exn]
(ii) C[e] to C[e.M] where M = tagof(σ) for some σ
(iii) C[e] to C[int(e)]

The translation rules use a context C[e] to specify that a transformation needs to bedone somewhere in the program. Importantly, all the rules are localmeaning that a change
1The package is one of the most downloaded F# libraries at the https://www.nuget.org package repository andthe open-source project at https://github.com/fsprojects/FSharp.Data has over 100 contributors.

https://www.nuget.org
https://github.com/fsprojects/FSharp.Data

1 olympics
2 .’filter data’.’Games is’.’Rio (2016)’.then
3 .’group data’.’by Athlete’.’sum Gold’.then
4 .’sort data’.’by Gold descending’.then
5 .’paging’.take(8)

Figure 2.5: Data transformation constructed using the pivot type provider. This implements thesame logic as pandas code in Figure 2.5, computing the top 8 athletes from the Rio 2016 Olympicgames based on their number of gold medals.
is done in a particular place in the program. The change can be (i) handling ofmissing value,(ii) accessing a newly introduced member when the change introduces a new choice typeand (iii) adding a conversion of a primitive value.
2.3 Type providers for query construction

The type providers presented in the previous section are designed to allow easy program-matic access to data in semi-structured formats. The focus is on providing typed directaccess to the data. The pivot type provider, presented in Chapter 7, builds on the sameconcepts but focuses on letting users construct queries over tabular data. The user shouldnot just be able to fetch the data in a typed form, but also use the provided types to filter,aggregate, and reshape the data.The use of the pivot type provider is illustrated in Figure 2.5, which implements thedata querying logic written using the pandas Python library in Figure 2.2. The type provideris implemented in the context of The Gamma programming language, which is a simplestatically typed programming language with class-based object model and type providersthat runs in the web browser.As the code sample shows, the querying is implemented as a single chain of memberaccesses. Except for take, which is a method with a numerical parameter, all the mem-bers are properties that return another object of another class type with further membersthat can be used to continue constructing the query (the symbol ’ is used to wrap namescontaining a space). The system has a number of properties:
• Discoverability of members. All querying logic is expressed through member ac-cesses. The members are statically known (generated by a type provider). Whenusing the type provider in an editor, the user gets a choice of available members(auto-completion) when they type “.” and they can thus construct a query simply byrepeatedly choosing one of the offered members.
• Lazy class generation. The classes used in the code are generated lazily. This is nec-essary because each operation transforms the set of available fields based on whichthe subsequent types are generated. For example, calling ’drop Games’ would re-move the field Games from the schema.
• Safety of generated types. Any query constructed using the type provider is correctmeaning that it will not attempt to access a field that does not exist in the data. Thisis a variant of the usual type safety property that is formalized below.
The formalization of the type provider follows the same style as that for F# Data, butit explicitly encodes the laziness of the type provider as illustrated in the next section.

2.3.1 Formalising lazy type provider for data querying

The pivot type provider works on tabular data. In order to generate a type, it needs to havethe schema of the input table (names of fields and their types). In the above example, thetype provider is imported through a configuration rather than code, and olympics refersto a value of the provided type, but the type is generated using a known schema of theinput data. In the formal model, the schema is written as (with f ranging over the fieldnames and τ ranging over a small set of primitive types):
F = {f1 7→ τ1, . . . , fn 7→ τn}

When the type provider is invoked, it takes the schema and generates a class for query-ing data of the given schema. The types of members of the class are further classes thatallow further querying. As the provided class structure is potentially infinite, it needs tobe generated lazily. The structure of the provided class definition, written as L is thus afunction mapping a class nameC to a pair consisting of the class definition and a functionthat provides definitions of delayed classes (types used by the members of the class C):
L(C) = type C(x : τ) = m,L′

Here, type C(x : τ) = m is a definition of a class C that consists of a sequence of mem-bersm and has a constructor taking a variable x of type τ as an argument. The structureand evaluation of the resulting object calculus is discussed in Chapter 7 and is looselymod-eled after standard object calculi (Igarashi et al., 2001; Abadi and Cardelli, 2012), with theexception that it includes operations for transforming data as primitives.The classes provided by the pivot type provider can be used to construct a query, whichis a value of type Query. Expressions of this type are those of relational algebra (projection,sorting, selection, aswell as additional grouping). The type provider constructs classes thattake the query constructed so far as the constructor argument. The providedmembers fur-ther refine and build the query. A type provider is formally defined as a function pivot(F),which is similar to the function JσK defined for the F# Data type providers:
pivot(F) = C, {C 7→ (type C(x : Query) = . . . , L)}where F = {f1 7→ τ1, . . . , fn 7→ τn}

The full definition given in Chapter 7 uses a number of auxiliary functions to define thetype provider, each of which defines members for specifying a particular query operation.To illustrate the approach, the following excerpt shows the drop(F) function that is usedto construct operations that let the user drop any of the columns currently in the schema
F . The generated class has a member ’drop f’ for each of the fields and amember then,which can be used to complete the selection and return to the choice of other query op-erations. Each of the drop operations returns a class generated for the newly restricteddomain and passes it a query that applies the selectionΠ operation of the relational alge-bra on the input data:
drop(F) = C, {C 7→ (l, L′ ∪⋃

Lf)}
l = type C(x : Query) = ∀f ∈ dom(F) where Cf , Lf = drop(F ′)

member ’drop f’ : Cf = Cf (Πdom(F ′)(x)) and F ′ = {f ′ 7→ τ ′ ∈ F, f ′ ̸= f}
member then : C ′ = C ′(x) where C ′, L′ = pivot(F)

The formalization of the pivot type provider follows a similar style as that of the F#Data, although it differs in that it explicitly represents the laziness of the type generationand also in that the provided types construct more complex code, expressed using a a vari-ant of relational algebra, that is executed at runtime. The formalization serves to explainthe functioning of the type provider, but also allows us to prove its safety.
2.3.2 Safety of data acquisition programs

Thepivot typeprovider guarantees that the data transformations, which canbe constructedusing the types it generates will always be correct. They will never result in an undefinedruntime behavior that one may otherwise encounter when accidentally accessing a non-existent field. This is an important result because the sequence of operations transformsthe fields in interesting ways. Operations like dropremove fields from the schema, while
group by changes the set of fields and their types (e.g., when we count distinct values ofa string-typed field f in aggregation, the resulting dataset will contain a numerical field f).To capture the property formally, we again state that any program written by the pro-grammer using the type provider (without directly accessing the low-level operations ofthe relational algebra) will always reduce to a value. The evaluation is defined on datasets
Dwhichmapfields to vectors of values, written asD = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→
vn,1, . . . , vn,m }. A specific kind of data value is a data series series τk, τv (D) that con-tains a vector of keys k and a vector of values v. The evaluation is defined as a reduction op-eration e⇝∗

L e
′ which also has access to class definitionsL. Similarly, the typing judgment

L1; Γ ⊢ e : τ ;L2 includes additional handling of lazily generated classes. It states that theexpression e has a type τ in a variable context Γ. The typing is provided with (potentiallyunevaluated) class definitions L1. It accesses (and evaluates) some of those definitionsand those that are used throughout the typing derivation are represented by L2.
Theorem 3 (Safety of pivot type provider). Given a schemaF = {f1 7→ τ1, . . . , fn 7→ τn},
let C,L = pivot(F) then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C ⊢ e : series τ1, τ2 ;L′

then for allD = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } such that ⊢ vi,j : τi
it holds that e[x ← C(D)] ⇝∗

L′ series τk, τv ({fk 7→ k1, . . . , kr, fv 7→ v1, . . . , vr})
such that for all j ⊢ kj : τk and ⊢ vj : τv.

In other words, if a programmer uses the provided types to write a program e thatevaluates to a data series and we provide the programwith input dataD that matches theschema used to invoke the type provider, the programwill always evaluate to a data seriescontaining values of the correct type. Although the property is not labeled as relative type
safety as in the case of the F# Data type providers, it follows the same spirit. A well-typedprogram will not go wrong, as long as the input has the right structure.
2.4 Contributions

In this chapter, I offered a brief overview of the work on type providers that is includedin Part II. The focus of this part is on simplifying programmatic data acquisition, that is onmaking it easier and safer to write code that reads data from external data sources. It con-sists of a type provider for semi-structured data in XML, JSON and CSV formats (Chapter 6)and a type provider that makes it possible to express queries over tabular data (Chapter 7).

L Key contributions. The publications included in Part II include three main con-tributions. They introduce the novel notion of relative type safety for discussingcorrectness of programs that rely on external data, they present type providers for
structured data formats and they a type provider for querying relational databasesthat guarantees relative type safety of the resulting program.

Both of the contributions consist of a practical implementation, as a library for the F# lan-guage and as a component of the web-based programming environment The Gamma, re-spectively. They combine this with a theoretical analysis using the methodology of theo-retical programming language research. This makes it possible to precisely capture subtleaspects of how the type providers work (including shape inference, laziness, and genera-tion of types for query construction), but also to capture safety guarantees of the gener-ated types. Given that type providers always access external data, the guarantees are notabsolute as in conventional programming language theory. For this reason, my work intro-duced a novel notion of relative type safety, stating that programs will “not go wrong” aslong as the input has the correct structure (in a precisely defined sense).From a broader perspective, the two type providers can be seen as filling a glaringgap in the theoretical work of statically-typed programs. A theoretician who defines atype system always uses a top-level typing rule ⊢ e : τ stating that a program e (closedexpression) that does not use any variables has a type τ . While at the top-level, programsmay not use any variables, this is misleading becausemost real-world programs access theoutside world in some way, but this is typically done in an unchecked way. Monads andeffect systems (Lucassen and Gifford, 1988; Peyton Jones and Wadler, 1993) can be usedto track that some external access is made, but they do not help the static type systemunderstand the structure of the outside data. With slight notational creativity, we cansay that the static type checking of a program that uses type providers starts with a rule
π(⊕) ⊢ e :τ where⊕ (used as the astronomical symbol for the Earth) refers to the entireoutside world and π refers to some projection from all the things that exist in the outsideworld to program variables with static types that a programming language understands.The two kinds of type providers discussed in this chapter also differ in how they ap-proach the technology gap suggested in Figure 1.1. The F# Data type providers aim tomakeprogramming with external data in a statically typed programming language a bit easier. Inother words, they extend the area that can be covered by conventional programming, in-cluding more users and reducing the complexity. The pivot type provider and The Gammaprogramming environment tries to fill a particular space within the gap. It lets a relativelylarge number of users (who are not professional programmers) solve problems that aremore complex than simple data wrangling in a spreadsheet system, but much less com-plex than using a conventional programming tool such as Python and pandas. Its usabilityis a topic I will revisit in Chapter 4 and the paper included as Chapter 10.

Chapter 3

Data infrastructure

Data scientists use a wide range of tools when working with data. A large part of whatmakes data cleaning and data exploration challenging is that data scientists often needto switch from one tool to another (Rattenbury et al., 2017). They may use an interactiveonline tool like Trifacta to do data cleanup, run an ad-hoc command-line tool to transformit, and then import it into a Jupyter notebook to create a visualization. Moreover, datascience is an interactive and iterative process. Data scientist need to be able to quicklyreview the results of the operation they performed in order to see whether the resultsmatch their expectations and to detect unexpected problems. The interactivity brings afurther challenge, which is the reproducibility of results. If the data scientist quickly triesmultiple different approaches, and reverts some of their earlier experiments, they shouldalways be able to know what exact steps led to the final result they see on their screen.In this chapter, I provide an overview of two contributions to the infrastructure fordoing data exploration. The work addresses the three requirements that arise from thetypical way data exploration is done as outlined above:
• Polyglot tooling support. Data scientist need an easy way of integrating multipledifferent tools. For example, they should be able to use simple data acquisition tools,such as the pivot type provider implemented in The Gamma, but then pass the datato Python for further processing or to a visual interactive tool.
• Live preview support. In order to let data scientists quickly review the results of theoperations they perform, the infrastructure should provide immediate live previewswithout unnecessary recomputation.
• Reproducibility and correctness. The results that the data scientist sees on the screenshould always match with the code (or reproducible another trace) they have intheir data exploration environment. If the operations involved are deterministic,re-running them should produce the same result.
Although each of those challenges has a range of solutions, there are notmany systemsthat address all of them. This chapter provides an overview of work leading towards such asystem. It consists of two parts. The first is a data exploration environment for The Gammathat introduces an efficient way of evaluating live previews (presented in full in Chapter 8)using a method based on maintaining a dependency graph. The second part is a notebooksystem for data science called Wrattler (presented in full in Chapter 9) that follows thesame basic approach, but allows integration of multiple languages and tools and also usesthe dependency graph to ensure reproducibility of the data explorations.

30

Figure 3.1: A live preview in The Gamma, generated for a code snippet that uses the pivot typeprovider for data exploration. The interface also lets the user navigate through the steps of thetransformation and modify parameters of the query.

Methodologically, the work outlined in this chapter combines the programming sys-tems research methods with programming language theory. Both of the systems are avail-able as open-source projects and they have been evaluated through a range of realisticcase studies. The publication on live previews for data exploration environments presentsa formal model to explain how live previews are computed using a dependency graph andto show the correctness of this approach, but it also includes a performance evaluation.The main contribution of the work on Wrattler is the novel architecture of the system.
3.1 Notebooks and live programming

As noted above, all three of the challenges have been addressed in isolation. The inte-gration of different tools has been addressed in the context of scientific workflow systemssuch as Taverna (Oinn et al., 2004) and Kepler (Altintas et al., 2004) that orchestrate com-plex scientific pipelines, but such tooling is too heavyweight for basic data explorationdone for example by data journalists. Scientific workflow systems also tackle the problemof reproducibility as the workflows capture the entire data processing pipeline.In the context of programming tools, work on live environments that provide immedi-ate feedback and help the programmer better understand relationships between the pro-gram code and its outputs have been inspired by the work of Victor (2012b,a). A compre-hensive review by Rein et al. (2019) includes programming tools and systems that provideimmediate feedback ranging from those for UI development and image processing to livecoding tools for music. A chief difficulty with providing live feedback as code is modifiedlies in identifying what has been changed. This can be done by using a structure editor thatkeeps track of code edits (Omar et al., 2019). The approach presented below aims to sup-port ordinary text-based editing and is based on the idea of reconstructing a dependencygraph from the code.

Finally, the issue of reproducibility has received much attention in the context of note-books for data science such as Jupyter (Kluyver et al., 2016). Although Jupyter can be usedto produce reproducible notebooks, there are practical barriers to this. In particular, it al-lows execution of cells out-of-order, meaning that one can run code in a way that modifiesthe global state in an unexpected and non-reproducible way. This has been addressed inmultiple systems (Pimentel et al., 2015; Koop and Patel, 2017) and our approach inWrattlerbuilds on this tradition.
3.2 Live data exploration environment

The Gamma explores a particular point in the design space of data exploration tools. It isbuilt around code written in a simple programming language, leveraging the type providerintroduced in Section 2.3. This focus on code makes it easier to guarantee reproducibilityand transparency of data analyses. At the same time, the design raises the question ofhow easy can data exploration be when done through a text-based programmatic envi-ronment. I revisit this problem from the human-computer interaction perspective in thenext chapter, after discussing the infrastructure that makes using The Gamma easier.One of the lessons learned from spreadsheets is the value of immediate or live feed-back. To make data exploration in The Gamma easier, the work outlined in this sectiondevelops an efficient method for displaying live previews for The Gamma as illustrated inFigure 3.1. However, providing live previews in a text-based programming environment isa challenge (McDirmid, 2007). There are two difficulties:
• Live previews and abstractions. It is difficult to provide live previews for code in-side functions or classes because variables in such context cannot be easily linkedto concrete values. Even if such abstractions are not used as frequently in data ex-ploration code, abstractions are often the key concern in conventional theoreticalthinking about programming language design.
• Responding to code changes. Code in a text editor can change in arbitrary ways andso it is unclear how to update the existing live preview when an edit is made. Thisis easier in structure editors where edits are limited and understood by the system,but live previews for a text-based systemneed to accommodate large and potentiallybreaking changes in code.
In the work included as Chapter 8, I tackle the first challenge by arguing that we needa better theoretical model of programming languages for data exploration. When datascientist explore data in a notebook environment, they typically do not introduce newabstractions and most code is first-order. They often use external libraries, some of whichprovide higher-order functions (projection, filtering, etc.) and so code may use functionsand lambda expressions, but those are typically passed directly as arguments to thosefunctions. My work thus introduces the data exploration calculus, which is a small formalmodel of a programming language that corresponds closely to codewritten to explore dataand can be used to formally study problems in programmatic data exploration tools.The problem of responding to code changes is tackled by constructing a dependencygraph and caching its nodes. When the code is edited, the new version is parsed, resultingin a new abstract syntax tree. The nodes of the tree are then analyzed and linked to nodesin a dependency graph. When the node of the tree corresponds to a dependency graphnode that has been created previously (with the same dependencies), the graph node is

Programs, commands, terms, expressions, and values

p ::= c1; . . . ; cn
c ::= t
| let x = t t

t ::= o
| x
| t.m(e, . . . , e)

e ::= t | λx→ e
v ::= o | λx→ e

Evaluation contexts of expressions

Ce[−] = Ce[−].m(e1, . . . , en) | o.m(v1, . . . , vm, Ce[−], e1, . . . , en) | −
Cc[−] = let x = Ce[−] | Ce[−]
Cp[−] = o1; . . . ; ok; Cc[−]; c1; . . . ; cn

Let elimination and member reduction

o1; . . . ; ok; let x = o; c1; . . . ; cn ⇝
o1; . . . ; ok; o; c1[x← o]; . . . ; cn[x← o]

(let)
o.m(v1, . . . , vn)⇝ϵ o

′

Cp[o.m(v1, . . . , vn)]⇝ Cp[o
′]

(external)

Figure 3.2: Syntax, contexts and reduction rules of the data exploration calculus

reused. Live previews are then computed (and associated with) dependency graph nodes.As a result, when dependencies of a particular expression do not change, it is linked to thesame graph node as before and the associated live preview is reused.In the following two sections, I provide a brief review of the data exploration calculusand of the dependency graph construction mechanism. In Chapter 8, the data explorationcalculus is then used to formalize the graph construction and show that live previews com-puted based on the graph are the same as previews that would be computed by directlyevaluating the data exploration calculus expression. The publication also evaluates the ef-ficiency using live previews, quantifying the reduction in overhead in contrast to two otherevaluation strategies.
3.2.1 Data exploration calculus

Thedata exploration calculus is a small formal language for data exploration. The calculus isintended as a small realistic model of how are programming languages used in data explo-ration scripts and computational notebooks. The calculus itself is not Turing-complete andmodels first-order code only, but it supports the notion of external libraries that providespecific data exploration functionality. This may include standard functions for workingwith collections or data frames that are common in Python, but also libraries based ontype providers as in the case of The Gamma.Figure 3.2 shows the syntax of the calculus. A program p consists of a sequence of com-mands c. A command can be either a let binding or a term. Let bindings define variables
x that can be used in subsequent commands. As noted earlier, lambda functions can onlyappear as arguments in method calls. To model this, the calculus distinguishes betweenterms that can appear at the top-level and expressions that can appear as arguments inan invocation. A term t can be a value, variable, or a member access, while an expression
e can be a lambda function or a term. Values defined by external libraries are written as o.

The evaluation is defined by a small-step reduction ⇝. Fully evaluating a programresults in an irreducible sequence of objects o1; . . . ; on (one object for each command,including let bindings) which can be displayed as intermediate results of the data analysis.The operational semantics is parameterized by a relation⇝ϵ that models the functionalityof external libraries. Figure 3.2 defines the reduction rules in terms of⇝ϵ and evaluationcontexts; Ce specifies left-to-right evaluation of arguments of a method call, Cc specifiesevaluation of a command and Cp defines left-to-right evaluation of a program. The rule(external) calls a method provided by an external library in a call-by-value fashion, while(let) substitutes a value of an evaluated variable in all subsequent commands and leavesthe result in the list of commands.Note that our semantics does not define how λ applications are reduced. This is doneby external libraries, which will typically supply functions with arguments using standard
β-reduction. The result of evaluating an external call is also required to be an object value
o. To illustrate how a definition of an external library looks, consider the following script:

let l = list.range(0, 10)
l.map(λx→ math.mul(x, 10))

Anexternal library provides the list and mathobjects, aswell as numbersn, lists of objects
[o1, . . . , ok], and failed computations ⊥. Next, the external library needs to define thesemantics of the range, mul, and map members through the⇝ϵ relation. The followingshows the rules for the map operation on lists:

e[x← ni]⇝ oi (for all i ∈ 1 . . . k)

[n1, . . . , nk].map(λx→ e)⇝ϵ [o1, . . . , ok]

(otherwise)
[n1, . . . , nk].m(v1, . . . , vn)⇝ϵ ⊥

When evaluating map, we apply the provided function to all elements of the list using stan-dard β-reduction and return a list of resulting objects. The⇝ϵ relation is defined on allmember accesses, but non-existent members reduce to the failed computation⊥.We require that external libraries satisfy two conditions. First, when amethod is calledwith observationally equivalent values as arguments, it should return the same value (com-positionality). Second, the evaluation of o.m(v1, . . . , vn) should be defined for all o, n and
vi (totality). The above definition satisfies those requirements by using the standard β-reduction for reducing lambda functions and by reducing all invalid calls to the ⊥ object.Compositionality implies the deterministic behavior of external libraries and is essentialfor implementing an efficient live preview mechanism. The totality of the definition, inturn, makes it possible to prove the following normalization property:
Theorem 4 (Normalization). For all p, there exists n, o1, . . . , on such that p⇝∗ o1; . . . ; on
where⇝∗ is the reflexive, transitive closure of⇝.

The value of the data exploration calculus is that it can be used tomodel the functional-ity of different tools that support data exploration. The work outlined here (and presentedin full in Chapter 8) uses the calculus to formalize an efficient mechanism for showing livepreviews during the editing of data exploration script. As mentioned earlier, the mech-anism works by constructing a dependency graph, binding expressions to the graph andassociating live previews with the (cached) nodes of the graph. The formal properties ofthe data exploration calculus make it possible to prove that live previews computed inthis way are the same as previews that would be obtained by fully re-evaluating the dataexploration script.

val(10) val(15)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s1)
arg(0)oo

arg(1)

OO

var(data)

(a) Graph constructed from initial expression:
let x = 15 in data.skip(10).take(x)

val(10)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s2)
arg(0)oo

arg(1)
kk

var(data)

(b) Updated graph after changing x to 10:
let x = 10 in data.skip(10).take(x)

Figure 3.3: Dependency graphs formed by two steps of the live programming process.

3.2.2 Computing previews using a dependency graph

Given a program in the data exploration calculus, I now describe the core of a mechanismthat can be used for providing the user with live previews as illustrated in Figure 3.1. Thekey idea behind our method is to maintain a dependency graph with nodes representingindividual operations of the computation that can be evaluated to obtain a preview. Eachtime the program text ismodified, we parse it afresh (using an error-recovering parser) andbind the abstract syntax tree to the dependency graph. When binding a new expression tothe graph, we reuse previously created nodes as long as they have the same structure andthe same dependencies. For expressions that have a new structure, we create new nodes.The nodes of the graph serve as unique keys into a lookup table containing previouslyevaluated parts of the program. When a preview is requested for an expression, we use thegraph node bound to the expression to find a preview. If a preview has not been evaluated,we force the evaluation of all dependencies in the graph and then evaluate the operationrepresented by the current node.The nodes of the graph represent individual operations of the computation. A nodeindicates what kind of operation the computation performs and is linked to its dependen-cies through edges. This makes it possible to define computation not just over expressionsof the data exploration calculus, but also over the dependency graph. In order to cachecomputed previews with the node as the key, some of the nodes need to be annotatedwith a unique symbol. That way, we can create two unique nodes representing, for exam-ple, access to a member named takewhich differ in their dependencies. The graph edgesare labeled with labels indicating the kind of dependency. For a method call, the labels are“first argument”, “second argument” and so on. Writing s for symbols and i for integers,nodes (vertices) v and edge labels l are defined as:
v = val(o) | var(x) | mem(m, s) | fun(x, s) (Vertices)
l = body | arg(i) (Edge labels)

The val node represents a primitive value and contains the object itself. Multiple occur-rences of the same value, such as 10, will be represented by the same node. Memberaccess mem contains the member name, together with a unique symbol s – two memberaccess nodes with different dependencies will contain a different symbol. Dependenciesof a member access are labeled with arg indicating the index of the argument (0 for theinstance and 1, 2, 3, . . . for the arguments). Finally, nodes fun and var represent functionvalues and variables bound by λ abstraction.

Figure 3.3 illustrates how to build the dependency graph. Node representing take(x)depends on the argument – the number 15 – and the instance, which is a node represent-ing skip(10). This, in turn, depends on the instance data and the number 10. Note thatvariables bound via let binding such as x do not appear as var nodes. The node using itdepends directly on the node representing the expression assigned to x.After changing the value of x, we create a new graph. The dependencies of the node
mem(skip, s0) are unchanged. The symbol s0 attached to the node remains the sameand so the previously computed previews can be reused. This part of the program is notrecomputed. The arg(1) dependency of the take call changed and so we create a newnode mem(skip, s2) with a fresh symbol s2. The preview for this node is then computedas needed using the already-known values of its dependencies.The full description of how the dependency graph is constructed can be found in Chap-ter 8. The construction proceeds recursively over the syntactic structure of the programin the data exploration calculus. For each expression in the program, it recursively obtainsgraph nodes representing its sub-expressions. It then checks the cache to see if a noderepresenting the current expression with the same dependencies exists already. If so, thenode is reused. If no, a new node (possibly with a new symbol) is created.The construction of the graph makes it possible to compute previews over the nodesof the dependency graph and cache the previously computed previews by using the graphnode as the cache key. I illustrate how the evaluation works using two of the reductionrules. For simplicity, I do not discuss the caching here. I will also write p for evaluatedpreviews which can be either primitive objects o or functions λx.e (for which we cannotshow a preview directly). Given a dependency graph (V,E) where V is a set of vertices
v1, v2, . . . , vn and E is a set of directed labelled edges of the form (v1, v2, l), the evalua-tion is then defined as a relation v ⇓ p. The following two rules illustrate evaluation forprimitive values and for member access:

val(o) ⇓ o (val)
∀i ∈ {0 . . . k}.(mem(m, s), vi, arg(i)) ∈ E
vi ⇓ pi p0.m(p1, . . . , pk)⇝ϵ p

mem(m, s) ⇓ p (mem-val)
The (val) rule is simple. If a graph node represents a primitive value, it directly reducesto the value. The (mem-val) rule illustrates a more interesting case. To evaluate a mem-ber access, we need to find the graph nodes that represent its arguments (by looking forlinks with an appropriate label), reduce those recursively, and then use the external libraryreduction⇝ϵ to reduce the member access.The sketch presented here omits one interesting aspect of the mechanism. In gen-eral, previews can be provided for all sub-expressions that include variables defined by anearlier let binding. However, if a sub-expression contains a variable bound by a lambdaexpression, we have no way of obtaining a suitable value for the variable. In this case, ourmechanism evaluates a delayed preview JeKΓ, which represents a partially-evaluated ex-pression that depends on variables specified by Γ. Delayed previews could still be useful ifthe user interface allowed the user to specify sample value for the free variables and theyalso have an interesting theoretical connection to work on Contextual Modal Type Theory(Nanevski et al., 2008) and comonads (Gabbay and Nanevski, 2013).

Figure 3.4: Wrattler running inside the JupyterLab system. The opened notebook passes data be-tween cells written in three different programming languages (Python, R and JavaScript).

The full paper, included as Chapter 8, uses two research methodologies to evaluatethe work. First, it formalizes how the live preview mechanism works using the modelbased on the data exploration calculus as sketched above. The formalization is used toshow that the previews computed over the dependency graph are correct. That is, theyare the same as the values we would obtain by evaluating the data exploration calculusexpressions directly. The formalization is also used to list a number of common edits to aprogram that do not invalidate previously computed live previews. Examples of such ed-its include extracting sub-expression into a let-bound variable, deleting or adding unusedcode, or changing unrelated parts of the program. The evaluation also employs program-ming systems research methods to empirically evaluate the efficiency of the live previewevaluation method. The paper contrasts the method with standard call-by-value and lazyevaluation strategies (without caching) and shows the reduction of delays in providing livepreviews for a sample coding scenario.
3.3 Live, reproducible, polyglot notebooks

The live data exploration environment discussed in the previous section tackles the prob-lem of providing rapid feedback to data scientists during data exploration. The other twochallenges that I listed in the opening of this chapter were the need for polyglot toolingsupport and the need to make data analyses more reproducible.The two challenges are addressed by the open-source Wrattler notebook system pre-sented in full in Chapter 9. Wrattler is an extension of the industry standard JupyterLabplatform. As illustrated in Figure 3.4, Wrattler adds a new type of document format that

Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture
Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture

Figure 3.5: In notebook systems such as Jupyter, state and execution are managed by a kernel. InWrattler, those functions are split between data store and language runtimes. Language runtimescan run on the server-side (e.g. Python) or client-side (e.g. The Gamma).

allows programmers to mix cells written in multiple different programming languages in asingle notebook. The extensibility model of Wrattler makes it possible to support not onlynew programming languages but also interactive tools that run directly in the notebook(hosted in a web browser). As a result, it is possible to integrate tools that provide a livepreview mechanism such as The Gamma and also interactive AI assistants that I discuss inPart IV. The architecture of the Wrattler system is based on two key principles:
• Polyglot architecture. The system is designed to allow the integration of compo-nents in different programming languages. This is done by splitting the monolithicarchitecture of Jupyter into individual components including the central data storeand multiple language runtimes.
• Design for reproducibility. To guarantee reproducibility and track data provenance,the system represents computation as a dependency graph. The graph is similar tothe one discussed in the previous section but uses a coarser granularity with onenode for each notebook cell.
TheWrattler system is presented in detail in Chapter 9. The paper follows the program-ming systems methodology. It focuses on the novel system architecture and documentsthe capabilities that are enabled by the architecture.

3.3.1 Architecture of a novel notebook system

Standard notebook architecture consists of a notebook and a kernel. The kernel runs on aserver, evaluates code snippets, and maintains the state they use. The notebook runs in abrowser and sends commands to the kernel in order to evaluate cells selected by the user.As illustrated in Figure 3.5, Wrattler splits the server functionality into two components:
• Data store. Imported external data and results of running scripts are stored in thedata store. The data store keeps version history and annotates data with metadatasuch as types, inferred semantics, and provenance information.
• Language runtimes. Code in notebook cells is evaluated by language runtimes. Theruntimes read input data from and write results back to the data store. Wrattlersupports language runtimes that run code on the server (similar to Jupyter) but alsobrowser-based language runtimes.

Figure 3.6: Dependency graph of a notebookfrom Figure 3.4. For each cell, the graph containsa code node and one (or possibly more) exportnodes that represent exported data frames. TheR and Python cells are independent and map toindependent graph nodes. The node correspond-ing to the final JavaScript cell depends on nodesrepresenting the two variables used in the code.

• Notebook. The notebook is displayed in a web browser and orchestrates all othercomponents. The browser builds a dependency graph between cells or individualcalls. It invokes language runtimes to evaluate code that has changed and readsdata from the data store to display results.
The central component of the system is the data store, which enables communica-tion between individual Wrattler components and provides persistent data storage. Dataframes stored in the data store are associatedwith a hash of a node in a dependency graphconstructed from the code in the notebook (using a mechanism discussed below) and areimmutable. When the notebook changes, new nodes with new hashes are created andappended to the data store. This means that language runtimes can cache data and avoidfetching them from the data store each time they need to evaluate a code snippet.External inputs imported intoWrattler notebooks (such as downloadedweb pages) arestored as binary blobs. Data frames are stored in either JSON or binary format. The datastore also supports a mechanism for annotating data frames with semantic information.Columns can be annotated with primitive data types (date, floating-point number) and se-mantic annotation indicating their meaning (address or longitude and latitude). Columns,rows, and individual cells of the data frame can also be annotated with custom metadatasuch as their data source or accuracy.

3.3.2 Dependency graphs for notebooks

At runtime, Wrattler maintains a dependency graph that is remarkably similar to the oneused in the live data exploration environment for The Gamma discussed in Section 3.2. Asbefore, the dependency graph is used to cache the results of previous computations. Thenodes in the graph have a unique identifier (hash) that is used as the key for caching datain the data store. When code in the notebook is modified, the graph is re-created, reusingpreviously created nodes where possible.An example of a dependency graph is shown in Figure 3.6. For every type of cell, Wrat-tler needs to be able to identify the names of imported and exported variables. In thecase of Python, R, and JavaScript, this is done using a lightweight code analysis. In the caseof The Gamma, which can also be used in Wrattler, the full parse tree and its associateddependency graph are available. A prototype extension of Wrattler embeds The Gammagraph as a sub-graph of the dependency graph maintained by Wrattler.An important design choice in the Wrattler design is that cells can only share data inthe form of a data frame. The trade-offs of this choice remain to be evaluated. On theone hand, it means that Wrattler fits only certain data analytical scenarios. On the otherhand, it makes it possible to easily share data between cells in different languages. In the

example dependency graph, each of the “export” nodes thus corresponds to a data framethat is stored in the data store (using the unique hash of the graph node as the key).The dependency graph is updated after every code change. This is done using the samemechanism as in the live data exploration environment discussed in Section 3.2. Wrattlerinvokes individual language runtimes to parse each cell. It then walks over the resultingstructure and constructs nodes for each cell or exported variable with edges indicatingdependencies. The hash for each node is computed from the data in the node (typicallysource code or variable name) and the hashes of nodes it depends on. An important prop-erty of this process is that, if there is no change in dependencies of a node, the hash ofthe node will be the same as before. As a result, previously evaluated values attached tonodes in the graph are reused.When the evaluation of an unevaluated cell is requested, Wrattler recursively evalu-ates all the nodes that the cell depends on and then evaluates the values exported by thecell. The evaluation is delegated to a language runtime associatedwith the language of thenode. For languages that run on the server-side (Python, R), the language runtime sendsthe source code, together with its dependencies, to a server that evaluates the code. Notethat the request needs to include only hashes of imported variables as the server can ob-tain those directly from the data store. For nodes that run on the client-side (JavaScript,The Gamma), the evaluation is done directly in the web browser.
3.4 Contributions

L Key contributions. The publications included in Part III include three main con-tributions. They capture the essence of data scripting in the form of data ex-
ploration calculus, they present the architecture for polyglot, live and reproducible
notebook systems and they describe an efficient algorithm for live preview recompu-
tation based on the construction of a dependency graph.

In this chapter, I outlined two contributions to the data analytics infrastructure that areincluded in Part III of this thesis. The two contributions describe systems that aim to makedata exploration more live and reproducible while supporting the polyglot reality of dataprocessing tools used today.The work included in Chapter 8 focuses on providing live previews during data explo-ration. Canwe simplify data exploration by efficiently previewing the result of a data trans-formationwhile the data analyst is constructing it and tweaking its parameters? Themech-anism presented in this thesis provides a possible answer. The work follows primarily theprogramming language research methodology and so it attempts to capture the core ideabehind the approach, using the simple (but adequate) formal model of the data explo-ration calculus. The implementation of the idea provides live previews for code writtenin The Gamma, a simple programming language with support for type providers that weencountered already in Section 2.3 and that I will return to once more in the next chapter,but using the perspective of human-computer interaction research.The work included in Chapter 9 presents a polyglot notebook system Wrattler. Thesystem makes it possible to mix multiple tools in a single notebook. This includes exist-ing programmatic tools, such as those based on Python and R, as well as novel tools like

The Gamma. The sharing is enabled by the design choice of allowing only data framesas the exchange format between cells. The promise of the Wrattler architecture is to en-able more research and innovation in the data exploration tooling space. It enables dataanalysts to use tools they are already familiar with, but use novel tools where appropri-ate - for example, include a cell in The Gamma that will let consumers of their notebooksexplore aggregate data without advanced programming expertise. We will leverage thisarchitecture again in the work on AI assistants (Chapter 11), outlined in the next chapter.One interesting point that is revealed by putting the two contributions side-by-side isthat they both rely on the same implementation technique. They both maintain a depen-dency graph of code (expressions or cells) and update it as the code is edited. The graphis constructed so that code that remains the same is bound to the same node, makingit possible to reuse previously computed results. The technical similarity is rooted in abroader principle. In both cases, the reproducible code is the final trace that produces allrelevant outputs. The principle is in contrast with an alternative where code is executedinteractively to modify some state as in systems based on Read-Eval-Print Loop (REPLs).

Chapter 4

Iterative prompting

Data wrangling is the tedious process of getting data into the right format for data explo-ration. It involves parsing data, joining multiple datasets, correcting errors, and recoveringsemantic information. According to domain experts (Rattenbury et al., 2017), data wran-gling takes up to 50-80% of data scientist’s time. Unfortunately, there is no easy cure tothe problem of data wrangling. The reason for the difficulty is what van den Burg et al.(2019) refer to as the double Anna Karenina principle: “every messy dataset is messy in itsown way, and every clean dataset is also clean in its own way.” In other words, there is nosingle characterization of a clean dataset that tools could optimize for. Human insight intothe data is always needed.Different research directions approached the problem of data wrangling from differentperspectives. Graphical end-user programming tools typicallymake it easy to complete themost common tasks for the most common kinds of datasets but are incapable of coveringthe inevitable special cases that are present due to the double Anna Karenina principle.Automatic AI-based tools for data wrangling suffer from the same issue. They work well ina large number of cases, but they can easily confuse interesting outliers for uninterestingnoise in cases where a human would immediately spot the difference. This is perhaps whymost data wrangling is often done manually and often involves a mix of programmaticand end-user tools. We can make those tools easier to integrate and make tweaking ofparameters easier through live previews (as discussed in the previous chapter), but whatif we could offer a different way of working with them?The contributions outlined in this chapter are centered around the question of how toeasily enable human data analysts, even if they are not expert programmers, to supply thenecessary human insight to programmatic tools when cleaning and analyzing data. The an-swer presented in the first contribution (Chapter 10) is an interaction principle that I referto as iterative prompting. In a tool that follows the principle, the user is repeatedly askedto choose from a list of offered options. The principle turns the familiar code completionmechanism from a programmer assistance tool into a non-expert programming mecha-nism. The two contributions included as Part IV use iterative prompting in two ways:
• In Chapter 10, the mechanism is used to allow non-programmers to construct dataexploration scripts that query data from a range of different data sources. A keycharacteristic of the method is that the mechanism allows users to construct onlycorrect scripts and all scripts expressible in the language can be constructed, i.e., theprinciple is correct and complete.

42

• In Chapter 11, the mechanism is used to guide four different semi-automatic AI datawrangling tools. Here, the tools run automatically, but the user can use iterativeprompting to specify constraints in order to correct errors and oversights in the au-tomatically generated solutions. In other words, iterative prompting provides a uni-fied interface through which the analyst can supply human insights to the AI tool.
The primary contribution of the work presented in this chapter is that it develops andvalidates novel approaches to the problem of data wrangling. To do this, it uses two pri-mary research methods. The work introducing iterative prompting (Chapter 10) is rootedin human-computer interaction research. It motivates the interaction principle, describesa prototype implementation, and shows its effectiveness through a qualitative case studyand an empirical user study. Thework on AI assistants (Chapter 11) combines programminglanguage theory and programming systems research methods. It describes the architec-ture of the system using a formal model and validates it by making four existing automaticAI tools interactive and semi-automatic. The novel tools are evaluated empirically. In caseswhere the fully automatic tool fails, our semi-automatic tool allows the user to correct thesolution with a small number (typically 1-2) of simple interactions.The work in this chapter is best seen as design space exploration. I believe that pro-gramming languages and systems provide the right starting point for tackling the problemof data wrangling and data exploration. But in order to fulfill this role, they need to besignificantly easier to use. Non-programmers need to be able to create simple data ex-ploration scripts and data analysts need an easy-to-use interface for solving typical prob-lems. Iterative prompting takes the basic auto-completion mechanism leveraged by typeproviders to a new level, turning it into a simple but powerful unifying interaction principle.

4.1 Data wrangling and data analytics

Data wrangling is most often done manually using a combination of programmatic andgraphical tools. Jupyter and RStudio are popular environments used for programmaticdata cleaning. They are used alongside libraries that implement specific functionality suchas parsing CSV files or merging datasets van den Burg et al. (2019); Sutton et al. (2018) andgeneral data transformation functions provided, e.g., by Pandas and Tidyverse.1Graphical datawrangling systems such as Trifacta2 consist ofmyriad tools for importingand transforming data, which are accessible through different user interfaces or througha scriptable programmatic interface. Finally, spreadsheet applications such as Excel andbusiness intelligence tools like Tableau are often used for manual data editing, reshaping,and especially visualization (Kandel et al., 2011). The above general-purpose systems arefrequently complemented by ad-hoc, for example for parsing PDF documents.Some of the most practical tools along the entire data wrangling pipeline partially au-tomate a specific tedious data wrangling task. To merge datasets, Trifacta and datadiff(Sutton et al., 2018) find corresponding columns using machine learning. To transformtextual data and tables, Excel employs programming-by-example to parse semistructureddata and many tools exist to semi-automatically detect duplicate records in databases.
1https://pandas.pydata.org and https://www.tidyverse.org (Accessed 12 June 2024)2https://www.trifacta.com (Accessed 12 June 2024)

https://pandas.pydata.org
https://www.tidyverse.org
https://www.trifacta.com

Interactive and semi-automatic data wrangling tools, allow the analyst to review thecurrent state of the analysis and make changes to it. The interaction between a humanand a computer in such data wrangling systems follows a number of common patterns:
• Onetime interaction. A tool makes a best guess but allows the analyst to manuallyedit the proposed data transformation. Examples include datasetmerging in Trifactaand datadiff (Sutton et al., 2018).
• Live previews. Environments like Jupyter, Trifacta, and The Gamma (Chapter 8) pro-vide live previews, allowing the analyst to check the results and tweak parametersof the operation they are performing before moving on.
• Iterative. A tool re-runs inference after each interaction with a human to refine theresult. For example, in Predictive Interaction (Heer et al., 2015) the analyst repeat-edly selects examples to construct a data transformation.
• Question-based. A system repeatedly asks the human questions about data and usesthe answers to infer and refine a general data model. Examples include data repairtools such as UGuide (Thirumuruganathan et al., 2017).
For interactive data wrangling tools, the live previews pattern is the most commonone with a varying degree of liveness. Most semi-automatic data wrangling tools acceptonly limited forms of human input. The onetime interaction pattern is the most commonand only a few systems follow the more flexible iterative pattern. The iterative promptingprinciple that I introduce in this chapter implements the iterative pattern in a uniformwaythat is inspired bywork on information-rich programming programming (Syme et al., 2013)and type providers (Chapter 2). It is centered around code but reduces the conceptualcomplexity of coding to a single basic kind of interaction.

4.2 Iterative prompting

Technically speaking, I have already discussed all the components that together make upthe first implementation discussed in this chapter. In The Gamma, the iterative promptingprinciple is implemented through the standard code completionmechanism that is used toselect members generated by the type provider outlined in Chapter 2. The main contribu-tion of the paper included as Chapter 10 is that it looks at the design from the perspectiveof human-computer interaction research.The key idea behind the principle is that a non-programmer should be able to con-struct an entire data exploration script only by selecting appropriate members from a listof offered choices. Technically speaking, the script thus becomes a single chain of memberaccesses. As I discuss below, this also requires a specific type provider design.The process of data exploration through iterative prompting is illustrated in Figure Fig-ure 4.1, which uses the type provider outlined in Chapter 2 to find the UK House of Lordsmember from the county of Kent with the most number of days away. The example showsthree steps of the process:
1. The user starts by selecting an input data source (not using iterative prompting) andtypes ‘.’ (dot) to see available querying operations. The system offers a list of (allavailable) operations including filtering, grouping, and sorting.

Figure 4.1: Using the iterative prompting interaction principle in The Gamma to explore datasetcontaining information on UK House of Lords members.

2. The user chooses filter data. They are then offered a list of conditions based onthe columns in the dataset. The user selects County is and is then offered a listof all possible values of the column in the dataset. Thanks to the fact that iterativeprompting in The Gamma is embedded in an ordinary text editor, they can starttyping to filter the (long) list of possible values.
3. The user chooses Kent as the required value. They are then offered a list includingfurther conditions and the then member that makes it possible to choose anothertransformation. They choose then and continue to add sorting.
In The Gamma, the iterative prompting principle is used in the context of text-basedprogramming language with type providers. This is a deliberate design choice. The aim ofthe work is to see whether iterative prompting can make text-based programming acces-sible to non-programmers. As a programming language, The Gamma is a simple object-oriented language with nominal type system and support for type providers. It allows acouple of constructs in addition to the method chaining shown in Figure 4.1 including letbinding and method calls such as expenses.paging.take(10). I briefly review the designtrade-offs below.

4.2.1 Iterative prompting for data querying

The paper included as Chapter 10 shows that iterative prompting can provide a unified in-terface for exploring data from a range of different data sources. One of the hypothesesevaluated in the paper is that this aids usability by supporting transfer of knowledge be-tween different kinds of data sources. To evaluate this, we implemented type providersfor exploring data cubes (Syme et al., 2013), created by the author of this thesis, tabulardata, as outlined in Chapter 2 and discussed in full in Chapter 7, and graph databases.Data cubes are multi-dimensional arrays of values. For example, the World Bank col-lects indicators about many countries each year. The type provider makes it possible toselect a data series, such as CO2 emissions of the US over time:
1 worldbank.byCountry.’United States’.
2 ’Climate Change’.’CO2 emissions (kt)’

(a) Exploring World Bank data using the datacube type provider, users choose values fromtwo dimensions to obtain a data series.
(b) To query graph data, the user specifiesa path through the data, possibly withplaceholders to select multiple nodes.

Figure 4.2: Design of type providers for exploring cube and graph data

The dimensions of the worldbank cube are countries, years and indicators. Figure 4.2a il-lustrates how theprovider allows users to slice the data cube – byCountry.'United States',restricts the cube to a plane and 'CO2 emissions (kt)' gives a series with years as keysand emissions as values. Similarly, we could first filter the data by a year or an indicator.Graph databases store nodes representing entities and relationships between them.The following example explores a database of Doctor Who characters and episodes. Itretrieves all enemies of the Doctor that appear in the Day of the Moon episode:
1 drwho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’Day of the Moon’

The query is illustrated in Figure 4.2b. We start from the Doctor node and then follow tworelationships. We use 'ENEMY OF'.'[any]' to follow links to all enemies of the Doctorand then specify 'APPEARED IN' to select only enemies that appear in a specific episode.The members are generated from the data; 'ENEMY OF' and 'APPEARED IN' are labelsof relations and Doctor and 'Day of the Moon' are labels of nodes. The [any] memberdefines a placeholder that can be filled with any node with the specified relationships. Theresult returned by the provider is a table of properties of all nodes along the specified path,which can be further queried and visualized.Unlike the graph and data cube providers, the type provider for tabular data does notjust allow selecting a subset of the data, but it can be used to construct SQL-like queries.For example, the code constructed in Figure 4.1 filters and sorts the data.When using the provider, the user specifies a sequence of operations. Members suchas 'filter data' or 'sort data' determine the operation type. Those are followed bymembers that specify operation parameters. For example, when filtering data, we firstselect the column and then choose a desired value. Unlike SQL, the provider only allowsusers to choose from pre-defined filtering conditions, but this is sufficient for constructinga range of practical queries.
4.2.2 Usability of iterative prompting

To evaluate the usability of iterative prompting, we conducted a user study for which werecruited 13 participants (5 male, 8 female) from a business team of a research instituteworking in non-technical roles (project management, communications). Our primary hy-pothesiswas that non-programmerswill be able to use iterative prompting to explore data,

but some aspects of the study were also designed to how users learn to use the mech-anism and whether knowledge can be transferred between different data sources. Thestudy methodology and detailed discussion of results can be found in Chapter 10. The keyobservations from the study are:
• Can non-programmers explore data with The Gamma? All participants were able tocomplete, at least partially, a non-trivial data exploration task and only half of themrequired further guidance. A number of participants shared positive comments inthe group interviews. One participant noted that “this is actually pretty simple touse,” while another felt the system makes coding more accessible: “for somebodywho does not do coding or programming, this does not feel that daunting.”
• How users learn The Gamma? There is some evidence that knowledge can be trans-ferred between different data sources. In two of the tasks, participants were able tocomplete the work after seeing a demo of using another data source. One partici-pant “found it quite easy to translate what you showed us in the demo to the newdataset.” Once users understood iterative prompting, they were also able to learnfrom just code samples and do not need to see a live demo of using the tool. Oneparticipant noted that “a video would just be this [i.e. a code sample] anyway.”
• How do users understand complex query languages? The tabular type provider usesa member then to complete the specification of a current operation, for examplewhen specifying a list of aggregation operations. Two participants initially thoughtthat then is used to split a command over multiple lines, but rejected the idea af-ter experimenting. One participant then correctly concluded that it “allows us tochain together the operations” of the query. While iterative prompting allows usersto start exploring new data sources, the structures exposed by more complex datasources have their own further design principles that the users need to understand.
• What would make The Gamma easier to use? Three participants struggled to com-plete a task using the tabular data source because they attempted to use an op-eration that takes a numerical parameter and thus violates the iterative promptingprinciple. Most participants had no difficulty navigating around in text editor andsome participants used the text editor effectively, e.g. leveraging copy-and-paste.However, two participants struggled with indentation and a syntax error in an unre-lated command. This could likely be alleviated through better error reporting.

4.3 AI assistants

Iterative prompting can be used as amechanism for program construction, as illustrated inthe previous section, but it can also be used to guide semi-automatic data wrangling tools.As discussed above, many systems that aim to simplify data wrangling using AI methodssupport only the onetime interaction patternwhere the user invokes the tool and gets backa result that they can manually refine if needed. In the paper included as Chapter 11, weuse iterative prompting as the basis for the AI assistants framework, which is a commonstructure for building semi-automatic data wrangling tools that incorporate human feed-back. When using an AI assistant, the user invokes the assistant on some input data, butthey can then repeatedly use iterative prompting to further constrain the solution.

Figure 4.3: Using the datadiff AI assistant inside Wrattler to semi-automatically merge UK Broad-band quality data from two files, parsed by an earlier R script. The user is in the process of addinga constraint to correct an error in the automatically inferred column matching.

As illustrated in Figure 4.3, AI assistants are available in the Wrattler notebook systemdiscussed in Chapter 3. In addition to code cells that obtain, process, and visualize data,users can create AI assistant cells that invoke a semi-automatic data cleaning tool on someof the available datasets. After invoking the assistant, users are shown a preview of thegenerated clean dataset. If they see an error in the automatically inferred solution, theycan choose one from the offered options to guide the AI tool and correct the error. Iterativeprompting for AI assistants uses a graphical user interface, but the interaction mechanismof repeatedly choosing one from the offered options remains the same.
4.3.1 Merging data with Datadiff

To give an overview of how AI assistants work, consider the task of merging multiple in-compatible datasets, using the UK broadband quality data, published by the UK commu-nications regulator Ofcom.3 The regulator collects data annually, but the formats of thefiles are inconsistent over the years. The order of columns changes, some columns arerenamed, and new columns are added. We take the 2014 dataset and select six interestingcolumns (latency, download and upload speed, time needed to load a sample page, coun-try, and whether the observation is from an urban or a rural area). We then want to findcorresponding columns in the 2015 dataset.
3Available at: https://www.ofcom.org.uk/research-and-data/data/opendata

https://www.ofcom.org.uk/research-and-data/data/opendata

The 2015 dataset has 66 different columns so finding corresponding columnsmanuallywould be tedious. An alternative is to use the automatic datadiff tool (Sutton et al., 2018),which matches columns by analyzing the distributions of the data in each column. Datad-iff generates a list of patches that reconcile the structure of the two datasets. A patchdescribes a single data transformation to, for example, reorder columns or recode a cate-gorical column according to an inferredmapping. Datadiff is available as an R function thattakes two datasets and several hyperparameters that affect the likelihood of the differenttypes of patches.Whenmerging Broadband datasets, datadiff correctly matches five out of six columns,but it incorrectly attempts to match a column representing Local-loop unbundling (LLU) toa column representing UK countries. This happens because datadiff allows the recodingof categorical columns, and seeks to match them based on the relative frequencies in thetwo columns. Consequently, the inferred transformation includes a patch to recode the
Cable, LLU, and Non-LLU values to Scotland, Wales, and England. To correct this, we couldmanually edit the resulting list of patches, or tweak the likelihood of the recodepatch. Suchparameter tuning is typical for real-world data wrangling, but finding the values that givethe desired result can be hard.The semi-automatic datadiff AI assistant presented in this chapter enables the analystto guide the inference process by specifying human insights in the form of constraints. TheAI assistant first suggests an initial set of patches with one incorrect mapping. After theanalyst chooses one of the offered constraints, shown in Figure 4.3, datadiff runs againand presents a new solution that respects the specified constraints until, after two moresimple interactions, it reaches the correct solution.
4.3.2 Formal model of AI assistants

The central contribution presented in Chapter 11 is a formal model of AI assistants thatcaptures their structure. The chapter uses the standard methodology of theoretical pro-gramming language research, but applied to a problem from the data engineering researchfield. The definition of an AI assistant captures a common structure that semi-automaticdata wrangling tools can follow in order to use iterative prompting as a mechanism forincorporating human insights into the data wrangling process.The formalmodel defines AI assistants as amathematical entity that consists of severaloperations, modeled as mathematical functions between different sets. Every AI assistantis defined by three operations that work with expressions e, past human interactions H ,input data X , and output data Y . Expressions e can also be thought of as data-cleaningscripts. Input and output data are typically one or more data tables, often annotated withmeta-data such as column types. While AI assistants share a common structure, the lan-guage of expressions e that an assistant produces, the notion of human interactions H ,and the notion ofX and Y can differ between assistants.
Definition 1 (AI assistant). Given expressions e, input dataX , output data Y , and humaninteractionsH , an AI assistant (H0, f, best , choices) is a tuple whereH0 is a set denotingan empty human interaction and f, best and choices are operations such that:

• f(e,X) = Y

• bestX(H) = e

• choicesX(H) = (H1, H2, H3, . . . ,Hn).

H = H0 e∗ = bestX(H) Y = f(e∗, X)

Display
preview of Y

script = e∗

data = f(e∗, X)
H1, H2, H3, . . . ,Hn

= choicesX(H)
Choose the next

interaction H = Hi acceptrefine

Figure 4.4: Flowchart illustrating the interaction between an analyst and an AI assistant. Stepsdrawn as rounded rectangles correspond to user interactions with the system.
The operation f transforms an input dataset X into an output dataset Y accordingto the expression (data cleaning script) e. The operation bestX recommends the best ex-pression for a given input dataset X , respecting past human interactions H . Finally, theoperation choicesX generates a sequence of optionsH1, H2, H3, . . . ,Hn that the analystcan choose from (e.g. through the user interface illustrated in Figure 4.3). When interact-ing with an assistant, the selected human interactionH is passed back to bestX in order torefine the recommended expression. Note that the sequence of human interactions givenby choicesX may be sorted, starting with the one deemed the most likely. To initialize thisprocess, the AI assistant defines an empty human interactionH0.The interestingAI logic canbe implemented in either the bestX operation, the choicesXoperation, or both. The f operation is typically straightforward. It merely executes theinferred cleaning script. Both bestX and choicesX are parameterized by input data X ,which could be the actual input or a smaller representative subset to make working withthe assistant more efficient.The working of AI assistants is illustrated in Figure 4.4. When using the assistant, westart with the empty interaction H0. We then iterate until the human analyst acceptsthe proposed data transformation. In each iteration, we first invoke bestX(H) to get thebest expression e∗ respecting the current human insights captured byH . We then invoke

f(e∗, X) to transform the input dataX according to e∗ and obtain a transformed outputdataset Y . After seeing a preview of Y , the analyst can either accept or reject the recom-mended expression e∗. In the latter case, we generate a list of possible human interactions
H1, H2, H3, . . . ,Hn using choicesX(H) and ask the analyst to pick an optionHi. We usethis choice as a new human interactionH and call the AI assistant again.The Definition 1 serves both as a model that can be studied formally, but also as thebasis for an implementation interface of AI assistants. The shared structuremakes it possi-ble to separate the development of individual AI assistants from the development of toolsthat use them, such as the AI assistant cell type implemented in Wrattler.
4.3.3 Practical AI assistants

To show that AI assistants provide a common structure for a wide range of semi-automaticdata wrangling tools, the work included as Chapter 11 takes four existing AI-based datawrangling tools that follow the onetime interaction pattern and turn them into interactivetools that follow the iterative pattern. The original tools cover the entire spectrum of datawrangling ranging from parsing of CSV files (van den Burg et al., 2019) and merging datafiles (Sutton et al., 2018) to type and semantic information inference (see Chapter 11).The approach we use for turning a non-interactive AI tool into an interactive AI as-sistant is similar in all four cases. The non-interactive tools generally define an objectivefunctionQ(e,X) that scores data cleaning scripts (expressions e) based on how well theyclean the specified input dataX . The automatic AI tool performs an optimization, looking

for the best data cleaning from the set of all possible expressions E for the given data.Formally, the optimization task solved by the existing tools can be written as:
argmaxe∈E Q(X, e)

The AI assistants that we implement and formally describe in Chapter 11 adapt this opti-mization to take account of the human interactions H that have been collected throughthe iterative prompting process illustrated in Figure 4.4. For a given human interaction
H (starting with H0), we define a set of expressions EH that is filtered to only includeexpressions satisfying the condition specified by the user through H . We also define aparameterized objective functionQH that is based on the originalQ but increases or de-creases the score for certain expressions based on H . Given these two definitions, it ispossible to define the bestX(H) operation as solving an optimization problem:

bestX(H) = argmaxe∈EH
QH(X, e)

The four concrete AI assistants that we developed use this definition, but they do not al-ways use human interactions to tweak bothEH andQH . It is often sufficient to restrict theset of expressions used by the search and reuse the original unmodified optimization al-gorithm. The implementation of the AI assistants (available inWrattler) generally requireda modification of the underlying non-interactive tool. The modification is tool-specific aseach of the AI assistants is based on a different kind of search algorithm. The four practicalAI assistants presented in Chapter 11 work as follows:
• The datadiff AI assistant infers a list of patches that transform the input dataset intoa format matching that of the given reference dataset. The assistant optimizes scorebased on the similarity of the data distributions of the matched columns. The semi-interactive AI assistant allows the user to specify that certain patches (e.g., matchingtwo particular columns) should or should not be included in the resulting set.
• The CleverCSV AI assistant infers formatting parameters of a CSV file to optimize ametric based on how regular the resulting parsed result is. The semi-interactive AIassistant allows the user to specify that a given character should be or should notbe used as a delimiter, a quote, or an escape character.
• The ptype AI assistant infers types of columns in a dataset, detecting outliers andvalues representing missing data. The optimization function looks for a type withmaximal likelihood based on a probabilistic model. The semi-interactive AI assistantallows the user to reject any aspect of the inferred type (type itself, outlier, missingvalue), effectively forcing the search to look for the next most likely type.
• The ColNet AI assistant annotates data with semantic information from a knowledgegraph such as DBpedia (Lehmann et al., 2015). It uses a Convolutional Neural Net-work model to calculate the score that sampled data is of a given semantic typeand then finds the type with the greatest score. The semi-interactive AI assistantadapts the scoring, allowing the user to specify that a given sample is (or is not) ofa specified semantic type.
In Chapter 11, we evaluate the effectiveness of the four AI assistants both qualitativelyand quantitatively. Our qualitative evaluation uses three scenarios in which the differentearlier datawrangling tools are unable to solve a real-world datawrangling challenge usingthe onetime interaction. We document how the user can use iterative prompting to obtain

the desired result, by repeatedly choosing one option from the offered list. To evaluate AIassistants quantitatively, we developed a benchmark that counts how many human inter-actions are needed to complete a given data wrangling task for multiple datasets (eitherreusing an existing benchmark or synthetically generated). The evaluation shows that 1-2human interactions are usually sufficient to complete the task.
4.4 Contributions

L Key contributions. The publications included in Part IV include three main con-tributions. They introduce the novel iterative prompting interaction principle.They use it as the basis of AI assistants, novel semi-automated data wrangling tools,as well as multiple type providers for accessing data in graph databases, data cubes,and relational databases.
This chapter brings together two contributions that aim to reduce the gap between pro-gramming and spreadsheets by making two tasks that typically require some kind of pro-gramming easier. In the first contribution, I focused on data exploration, whereas the sec-ond contribution tackles the task of data wrangling. My work shows that, in both cases,it is possible to solve a large class of problems using the iterative prompting interactionprinciple where the user repeatedly chooses one from the offered options. The interac-tion principle is simple in that it reduces the cognitive load by using the recognition over
recall design heuristic. When using iterative prompting, the users do not need to recall thekind of operation they could use to solve the problem. Instead, they can review the list ofoffered options and recognize the most suitable one.The work included in Chapter 10 introduces the iterative prompting interaction prin-ciple and uses it to view the type provider for data querying outlined in Chapter 2 from anovel perspective using the human-computer interaction research methodology. Ratherthan treating auto-completion as a programmer assistance tool, it is now used as a mech-anism that allows non-programmers to construct entire programs. The key characteristicsof the type provider that make this possible are that it is complete and correct, i.e. itmakes it possible to construct all programs and any program constructed by repeatedlychoosing one of the offered options is correct (even though some may result in emptydata). The user study that I briefly discussed in this chapter shows that iterative prompt-ing can be used by non-programmers to complete a range of data exploration tasks in acode-oriented environment. This suggests that it is possible to combine the reproducibilityand transparency of using code with ease of use approaching that of spreadsheets.The work included in Chapter 11 uses the iterative prompting interaction principle (al-beit without using the term) to provide human insights to semi-automatic data wranglingtools that I refer to as AI assistants. The challenge addressed by AI assistants is how toguide data wrangling tools based on AI techniques. Although such tools can solve manyproblems automatically, the complexity of real-world data sets often means that somehuman guidance is needed. Iterative prompting provides an easy method through whichhumans can provide such guidance. The chapter introduces a formalmodel of AI assistantsand uses it as the basis for the implementation of four practical tools.

The contributions presented in this chapter link together many of the themes and con-tributions discussed in earlier chapters. In particular, the notion of type providers wasintroduced as a programming tool from the programming language theory perspectivein Chapter 2. This chapter provides an alternative human-centric perspective. The tech-niques discussed in Chapter 3 make type providers even more usable by providing livepreviews during their usage. Finally, the Wrattler notebook system serves as a platformfor integrating many of the experiments discussed in this thesis. For example, it makes itpossible to combine interactive AI assistants with conventional programmatic data explo-ration using the widely used Python and R languages.

Chapter 5

Data visualization

Data visualization plays a dual role in the data science lifecycle. Quick data visualizationsare needed during data exploration to help data analysts make sense of data, find errors,andunderstandhow their processing scriptswork. However, data visualizations can also beone of the outcomes of data science projects. In particular, data journalists often analyzedata in order to find interesting insights and share thosewith their readers. A sophisticatedand illuminating data visualization can be a powerful tool for such storytelling.Producing a quick data visualization during data exploration is usually easy. In program-matic environments, it is typically a matter of calling a function with a few parameters tospecify the type of chart one wants to see. However, developing a data visualization thathelps the reader gain insight into a complex problem and critically think about it is typicallya challenging programming task.As an example, consider the interactive data visualization shown in Figure 5.1, createdusing the Compost library discussed below. The visualization is inspired by the New YorkTimes “You draw it” article series (Aisch et al., 2015). It encourages critical thinking by firstasking the reader to make a guess about the actual data. Only after the reader drags thebars according to their presuppositions, the chart reveals the actual values.

(a) The user first has to guess what the values are (here,guess how much the UK government spends per category). (b) After clicking a button, actual data is shown(together with a marker showing the guess).
Figure 5.1: An interactive data visualization to encourage critical thinking about data created usingthe composable Compost data visualization library.

54

The chart is based on a standard bar chart, but there are multiple additional aspectsthat make creating such a chart a challenging programming problem:
• The chart combines multiple different visual elements. In addition to the bars them-selves, it also needs to include the markers (dashed lines) that show the guess.
• The chart uses a custom color scheme, and background to indicate possible areas ofthe bar and it greys out the bars for which the user has not yet made a guess.
• The chart is interactive, allowing the user to drag the end of the bar to any locationin the specified range (until the button is clicked).
• Once the button is clicked, a brief animation runs, and the bars move from theguessed value to the actual value (the marker stays at the original position).
Although numerous charting libraries support some of the above features, creating acustom data visualization such as the above typically requires using a low-level visualiza-tion library such as D3 (Bostock et al., 2011), which requires advanced programming skills.More advanced programming skills are needed if one wants to implement data visual-izations that support features such as brushing and linking (Buja et al., 1991). The formerallows the user to focus on a particular region of the chart, while the latter connects twocharts and adapts the visualization in the second chart based on the data selection in thefirst chart. Implementing linking is particularly challenging because it requires understand-ing what inputs contributed to the selected data points and then recomputing the datadisplayed in the other visualization.In the following two sections, I provide an overview of two systems that are presentedin Part V. The systems make it easier to create rich interactive visualizations. First, the pa-per included as Chapter 12 presents Compost, a novel functional data visualization librarythat makes it possible to compose rich charts from a small number of primitive buildingblocks and combinators. Second, the paper included as Chapter 13 presents a programanalysis technique that can be used to automatically create linked data visualizations basedon the code of scripts that construct charts from shared data. The two systems are aimedat programmers, but they are simple in that they make it possible to create sophisticatedinteractive visualizations using a small amount of straightforward code.Both of the papers introduced in this chapter use programming language researchmethods. Chapter 13 presents the analysis technique formally, using a small model pro-gramming language, and discusses its properties. Chapter 12 gradually introduces the con-cepts of the Compost library in the form of a tutorial. Published as a functional pearl (Gib-bons, 2010), it relies on the tacit assessment of the functional programming community.

5.1 Visualisations to encourage critical thinking

Data visualizations that aim to present data-driven insights to a broader audience oftenrequire significant programming effort. The “You draw it” series by New York Times (Aischet al., 2015) lets the user draw on the chart, while the award-winning visualization of pop-ulation density in Asian cities by Bremer and Ranzijn (2015) tells a story through multipleanimated and interlinked charts. Visualizations like these are often built using D3 (Bostocket al., 2011), by constructing the chart piece by piece. D3 is easier than drawing pixels orprimitive shapes, but it still requires tediously transforming values to coordinates, specify-ing positions in pixels, and modifying shape properties in response to events.

Figure 5.2: A bar chart thatcompares the UK general electionresults for years 2017 (left) and2019 (right), created using theCompost library.

Higher-level compositional approaches to chart construction are typically based on thegrammar of graphics (Wilkinson, 1999). In the grammar of graphics, a chart is a mappingfrom data to chart elements and their visual attributes. Libraries based on this idea in-clude ggplot2 (Satyanarayan et al., 2016; Wickham, 2016) and Vega (Wickham, 2010). Themapping is limited to a number of built-in operations, which works well for common typesof scientific charts, but has a limited generality. For example, in Altair (VanderPlas et al.,2018), it is possible to link multiple charts by specifying a data transformation that relatesthem, but this has to be specified using a limited set of combinators provided (and under-stood) by the library.In contrast to systems based on the grammar of graphics, the two systems presentedin this chapter rely on the host programming language to specify the mapping from datato chart elements. A chart is merely a resulting data type describing the visual elementsusing domain-specific primitives. In the two chapters, summarised in the next two sec-tions, we first define a small, orthogonal set of expressive primitives and then introducea program analysis technique that can automatically infer the mapping between sourcedata and elements of the chart.
5.2 Composable data visualisations

The Compost library, presented in Chapter 12 can be seen as a functional domain-specificlanguage for describing charts. As is often the casewith domain-specific languages, findingthe right primitives is more of an art than science. The Compost library is designed in away that gives it a number of desirable properties:
• Concepts such as bar charts, line charts, or charts with aligned axes are all expressedin terms of more primitive building blocks using a small number of combinators.
• The primitives are specified in domain terms. When drawing a line, the value of an
y coordinate is an exchange rate of 1.36 USD/GBP, not 67 pixels from the bottom.

• Common chart types such as bar charts or line charts can be easily captured as high-level abstractions, but many interesting custom charts can be created as well.
• The approach can easily be integrated with the Elm architecture (Czaplicki, 2016) tocreate web-based charts that involve animations or interaction with the user.

0 50 100 150 200 250

0 0.5 1 0 0.5 1 0 0.5 1
Conservative Labour LibDem

Figure 5.3: On a continuous scale (above), a position is determined by a number. On a categoricalscale (below), a position is determined by the category and a number between 0 and 1.

5.2.1 Declarative chart descriptions

To illustrate the first two points, consider the chart in Figure 5.2, which compares UK elec-tion results for the years 2017 and 2019. In the chart, the x axis shows categorical valuesrepresenting the political parties such as “Conservative” or “Labour”. The y axis showsnumerical values representing the number of seats won such as 365 MPs. When creatinga chart, most high-level libraries such as Google Charts expect values in domain terms, butmore flexible libraries like D3 expect the user to first explicitly translate such domain val-ues to pixels. In Compost, the user composes primitive graphical elements such as filledrectangles, but their position is specified in terms of domain values.Our design focuses on two-dimensional charts with x and y axes. Values mappedto those axes can be either categorical (e.g. political parties, countries) or continuous(e.g. number of votes, exchange rates). The mapping from categorical and continuousvalues to positions on the chart, as well as the range of values associated with a scale,are calculated automatically. Figure 5.3 illustrates the two kinds of values. A continuousvalue, written as cont n contains any number n. A categorical value cat c, r consists of acategorical value c and a number r between 0 and 1. The second parameter determinesan exact position in the range allocated for the categorical value such as “Green”.Assuming we have a list elections which contains 5-element tuples with the partyname, colours for 2017 and 2019 and the number of MPs for 2017 and 2019, we can con-struct the chart in Figure 5.2 as follow (using F# or similar language with list comprehen-sions):
1 axisl (axisb (overlay [
2 for party, c17, c19, mp17, mp19 in elections →
3 padding 0, 10, 0, 10, overlay [
4 fill clr17, [
5 (cat party, 0), (cont 0); (cat party, 0), (cont mp17);
6 (cat party, 0.5), (cont mp17); (cat party, 0.5), (cont 0)],
7 fill clr19, [
8 (cat party, 0.5), (cont 0); (cat party, 0.5), (cont mp19);
9 (cat party, 1), (cont mp19); (cat party, 1), (cont 0)]
10]
11]))

The central part of the code (lines 4-6 and 7-9) constructs two filled rectangles (bars) rep-resenting the number of MPs for 2017 and 2019, respectively. Each rectangle is specifiedby four corners (separated using “;”). The y axis is continuous and the rectangle occupiesspace from 0 to the specified number. The x axis is categorical. The first bar takes the firsthalf of the space available for the party (0 to 0.5) while the second occupies the second

half (0.5 to 1). We then compose the two rectangles using overlay, which ensures theyare rendered on a shared scale. The padding primitive adds a space around a given shape(specified in pixels). We generate a pair of rectangles for each party using a list compre-hension and then overlay all the rectangles before adding axes on the left and bottom.In addition to the primitives illustrated by the above example, Compost has a numberof other basic shapes (lines, text, bubbles). Perhaps more interestingly, there are also acouple of combinators that make it possible to combine charts or create charts that shareaxes. The nest combinator, explained in Chapter 12, takes a shape (with its own scales) andnests it inside an explicitly specified range. We can, for example, take a space defined bya categorical value (from cat c, 0 to cat c, 1) and nest another shape, or even a line chart,inside this space. In practice, this is useful for combining multiple charts. The combinatorcan also apply to one axis only, making it possible to create two charts that are side-by-sideon one axis but share the other axis.
5.2.2 Rendering a Compost chart

The rendering logic of Compost takes a declarative chart description such as the one gen-erated by the simple functional program above and transforms it to an SVG in three steps:
• Inferring the scales of a shape. The implementation first recursively walks over thecomposed shape and infers the ranges of the x and y scales of the shape. For shapesconstructed using overlay, this unions the ranges of the scales of the containedshapes. In the case of continuous scale, we take the overall minimumandmaximum.For a categorical scale, the sets of categories obtained for each shape are unioned.
• Projecting coordinates. Once the chart is annotatedwith the inferred scales, we turnall positions from values defined in domain terms to values specified in pixels. Thisis done using a projection function that takes a scale, a space it should be mappedonto (in pixels) and a value on the scale. The results are x and y coordinates in pixels.
• Rendering chart shapes. Finally, the recursively defined shape is turned into a flatlist of shapes in the SVG format. This involves collecting and concatenating all theprimitive shapes, lines, and text elements.
The implementation of the core logic consists of only 800 lines of code. Althoughthe process is conceptually simple, there are a number of subtle details. In particular,operations that specify some parameters in pixels (such as padding) have to transform theprojection operation so that the resulting shapes only occupy a spacewithout the specifiedpadding. Nesting also requires keeping track of the outer range and the inner scale. It isalso worth noting that some operations, such as axis that add an axis with labels, can beeliminated at some point in the process. In particular, axis is replaced by overlaid linesand text elements in the first step.

5.2.3 Functional abstraction and interactivity

As noted earlier, Compost differs from libraries based on the grammar of graphics such asggplot2 (Wickham, 2016) that treat a chart as as a mapping from data to chart elementsand their visual attributes. In Compost, a chart is a concrete description of chart elements,generated from data by code written in an ordinary programming language. I illustrated

this above with the code that generated a bar chart using list comprehensions. This meansthat Compost can leverage other capabilities of the host language and its ecosystem.First, it is possible to easily introduce new higher-level chart abstractions. For example,the chart shown in Figure 5.2 is sometimes referred to as Dual X-axis Bar Chart. Some high-level libraries such as Google Charts support this directly. We saw that the chart can beconstructed using Compost, but in a somewhat tedious way. However, in a host languagethat lets us define new functions like F#, we can introduce a new abstraction for this kind ofchart. The followingmerely extracts the rectangle construction from the previous exampleinto a function dualXBar:
1 let dualXBar xcat clr1 clr2 yval1 yval2 = overlay [
2 fill clr1, [(cat xcat, 0), (cont 0); (cat xcat, 0), (cont yval1);
3 (cat xcat, 0.5), (cont yval1); (cat xcat, 0.5), (cont 0)],
4 fill clr2, [(cat xcat, 0.5), (cont 0); (cat xcat, 0.5), (cont yval2);
5 (cat xcat, 1), (cont yval2); (cat xcat, 1), (cont 0)]
6]

We can now use the function inside a list comprehension to construct the original chart injust three lines of code:
1 axisl (axisb (overlay [
2 for party, c17, c19, mp17, mp19 in elections →
3 dualXBar party c17 c19 mp17 mp19]))

One last interesting aspect of the Compost library that is discussed in Chapter 12 is thesupport for interactivity. The library can be used in conjunction with the Elm (model-view-update) architecture (Czaplicki, 2016) where the programmer defines the program stateand events. They then provide a function that renders a chart based on the current state.They also specify a function that updates the state when an event occurs. For example, inthe earlier interactive chart in Figure 5.1, one event is clicking on a bar, which then updatesthe guessed value. Compost makes programming such charts easier by reporting eventsin terms of domain values (using a backward projection). When the user clicks on a bar,the event handler receives a pair of values such as cat “Health”, 0.3 and cont 12.7. It thenupdates the guessed value for the category Health to the new value 12.7% GDP.
5.3 Automatic linking for data visualizations

The Compost library makes it possible to compose an appealing data visualization fromindividual graphical elements. This is necessary if wewant to create rich interactive charts.However a single chart that offers a single perspective is not enough if we want to explaincomplex data. To support better understanding, linked visualisations (Buja et al., 1991)consist of multiple charts that display different aspects of the same data. When the userselects an element in one of the charts, the elements that are based on related data as theselected one are highlighted in the other charts. This makes it possible to relate differentperspectives on the same data.For example, consider the visualization in Figure 5.4 that displays data on energy pro-duction over time for different countries and different types of energy. A single chart withthree variables would be difficult to read, so the visualization instead filters and aggregatesthe data in two ways. It shows data per country for the year 2015 and the ratio of energy

Figure 5.4: Linked data visualization of energy production, showing aggregated data per country for2015 (left) and timeline with the ratio of production in the USA and China per energy type (right).

produced in the USA and China over time for each type of energy. The user can select aparticular data point (bar on the left, point on the right). If they select the bar representingthe USA, the system infers which input data contributed to the value (data for all types ofenergy for the USA in 2015) and computes what chart elements depend on this data in thesecond chart (data points for 2015). Selecting Germany would not highlight any points asthe right chart depends only on data points for China and the USA.Constructing linked visualization like the one in Figure 5.4 is difficult because the datavisualization needs to understand how to map selection between the charts. This can bedone automatically for simple data transformations in libraries based on the grammar ofgraphics such as Altair (VanderPlas et al., 2018). In those, simple data transformationscan be expressed using primitives provided by the library. However, the approach doesnot work if the data transformation is more complex or if the user prefers to express itin an ordinary programming language (as ordinary list processing) as opposed to using aspecial-purpose domain-specific language (grammar of graphics primitives).In Chapter 13, we use dynamic dependency analysis techniques to simplify the creationof linked data visualizations. Those techniques have traditionally been used in areas suchas information-flow security, optimization, and debugging. In our work, we extend thetechniques so that they can provide fine-grained dependency information for programsconstructing structured outputs, such as the data structures used to describe charts inthe Compost data visualization library. We introduce a simple functional programminglanguage Fluid that the users can use to write arbitrary data transformations and constructcharts. By combining two dynamic dependency analyses, we can then automatically inferthe relationships between multiple charts constructed from the same data.
5.3.1 Creating linked visualizations using Fluid

Consider again the visualization shown in Figure 5.4. The two charts are based on the sameinput data, which is a collection of records storing the country, energy type, year, and theamount produced. To produce the chart on the left, we filter the data by year and thensum the produced energy for each of the countries. In Fluid, this is written as a simplefunctional program using list comprehensions:
1 let data2015 =
2 [row | row ← data, row.year == 2015]
3 let totalFor c =
4 sum [row.output | row ← data2015, row.country == c]
5 let countryData =

6 [{ x: c, y: totalFor c } | c ← ["China", "USA", "Germany"]]
7 BarChart { data: countryData }

The code is similar towhat onewouldwrite inwidely-used functional languages such asF# or Haskell. It defines filtered data2015, a helper function totalFor and then computesdata per country using the helper before constructing the resulting chart. The last stepuses a built-in BarChart function. As discussed earlier, this could be implemented as anabstraction over more basic Compost primitives.The program analysis automatically infers what values from the source data contributeto the resulting y value, computed using the totalFor function. The relevant rows areonly those for the year 2015 (due to the filtering) and only those for the given country(due to the totalFor implementation). It is worth noting that unlike approaches basedon the grammar of graphics, we are not restricted to a set of pre-defined primitives. Thedata transformation can be arbitrary and we can write it using custom functions such as
totalFor.The code to construct the second chart is slightly more complicated because it con-structs a line chart with multiple lines. It defines series helper to obtain a time series fora given country and energy type, plot helper that calculates the ratio between the USAand China for a given energy type and then composes the chart:

1 let series type country =
2 [{ x: year, y: row.output } | year ← [2013..2018], row ← data,
3 row.year == year, row.energyType == type, row.country == country]
4 let plot type =
5 zipWith (fun p1 p2 → { x: p1.x, y: p1.y / p2.y })
6 (series type "USA") (series type "China")
7 LineChart { plots: [
8 LinePlot { name: type, data: plot type }
9 | type ← ["Bio", "Hydro", "Solar", "Wind"]] }

The example illustrates two requirements that we have for dynamic dependency analysesthat let us automatically generate linked data visualizations. First, we are not interestedin the resources (code and data) needed to produce the entire result, but only in the re-sources needed to produce a part of the result. Specifically, if the user clicks on a datapoint of the line chart, we want to know what resources contributed to the data field ofa specific record in the list passed to one particular LinePlot. In the analyses, we addressthis by introducing the concept of a selection for structured values, which lets us marka particular part of the value. (We use this mechanism for analyzing charts, but it couldequally be used to analyze code that produces e.g., representations of documents.)Second, we needmultiple different kinds of dependency analyses to automatically linkthe charts. If the user selects a part of one chart, we need a backward analysis to trace itback to the original data. This analysis needs to determine parts of the input that wereneeded for the output, even if they were also used elsewhere (an alternative analysiswould look for inputs needed only for the particular output). Then we need a forwardanalysis to determine what outputs it affects in the linked chart. This, again, needs to de-termine parts of the output that needed the specific parts of the input, even if they alsoneeded other unmarked inputs (an alternative analysis would look for outputs that onlyneeded the particular inputs). As we will see, this analysis leads to four different programanalyses. We use two of them to automatically generate linked data visualizations.

5.3.2 Language-based foundation for explainable charts

The program analyses introduced in Chapter 13 can be, more broadly, seen as tools thathelp us understand how programs work. They could be used to support a range of usecases outside of the narrow domain of data visualization. However, to keep the presenta-tion simpler, I will focus on this particular use case. Given the scope of the Fluid languageand the considerable number of analyses, I do not discuss many details in this overviewand focus on sketching the overall structure of the analyses and their key properties.The analyses are built around the central notion of a program trace T . The traces aregenerated during program evaluation and they collect information about how the eval-uation proceeded. More formally, a trace is a compact representation of the derivationtrees in the operational semantics. Given a program e and a variable environment ρ, thefollowing judgment states that the program reduces to a value v, producing a trace T :
T :: ρ, e⇒ v

The program analyses operate on values where some parts are marked as selected. Forexample, if a program e produces a value v that represents a chart using the primitivesof the Compost library, we can mark some parts of the resulting chart, for example, a barcreated using the fill primitive.Formally, we annotate values and terms with selection statesα from a bounded latticeof selections A. It is possible to annotate primitive values such as numbers nα or emptylists []α but also values that contain further values such as a non-empty list (a cons cell)such as v1 :α v2. Thiswould indicate thatwe are interested in data that determined that thelist will be non-empty (but not the specific values it contains). In practice, the most usefulkind of annotation is a two-point lattice (selected, non-selected), but the generality allowsfor other uses, such as a vector of selections (to be computed in one step and displayedusing different colors).
5.3.3 Bidirectional dependency analyses

The program analyses that are introduced in Chapter 13 are defined for a fixed computa-tion T :: ρ, e ⇒ v where T is the trace. In practice, the system evaluates the expression
e and uses the resulting trace T repeatedly for different analyses and with multiple pos-sible selections. The first two analyses that we define are the backward and forward datadependency analyses written as ⇒T and ⇒T , respectively. The two analyses are definedover the traceT and take the availability-annotated variable context and an expression ρ, eas inputs. They produce an annotated value v, which is the same as the value computedinitially, but with availability annotations. Their intuitive meaning is as follows:

• Forward data dependency ρ, e, α ⇒T v or “what only needs me”. Given a contextand expression where annotations indicate what resources (data and parts of theprogram) are available, the analysis produces a value with annotations indicatingwhat part of the value can be computed using only the available resources.
• Backward data dependency ρ, e, α ⇒T v or “what do I need”. Given an annotatedvalue v, the analysis follows the evaluation backward (using the trace T) and anno-tates resources (data and parts of the program) that have to be available in order toproduce the annotated parts of the value v.

The two analyses form a Galois connection, i.e., the two analyses are not exactly in-verses, because they approximate in some ways, but they are close. For example, if wehave a value with a selection v, ask what is needed for the selection using ⇒T and thenask what can be computed using the same data using⇒T , we may find that other parts ofthe value can also be computed, but the original selection will certainly also be included.Interestingly, the forward and backward data dependency analyses are not sufficientto support linked data visualizations. The backward analysis can correctly determine whatparts of the input are needed in order to produce the selected output. However, to high-light the related elements of the other chart, we do not need to know what the inputselection is sufficient for, but what it is necessary for. In other words, we do not need toknow what can be computed using only the selected parts of the input, but what part ofthe result will they certainly contribute to. This can be formulated as a dual of the originalanalyses. What would we not be able to compute if the selected data were unavailable?In the paper included as Chapter 13, we define this duality formally and exploit it todefine De Morgan dual (⇒T
◦, ⇒T

◦) of the Galois connection (⇒T ,
⇒

T), which itself alsoforms a Galois connection. The intuitive meaning of the new analyses is as follows:
• Dual forward data dependency ρ, e, α ⇒T

◦ v or “what needs me”. For an anno-tated context and expression (resources), the analysis highlights what parts of theresulting value depend on the specified resources, i.e., what would we not be ableto compute if the selected parts of the value were unavailable.
• Dual backward data dependency ρ, e, α ⇒T

◦ v “what do only I need”. Given anannotated value, the analysis highlights parts of the program and data that are onlyneeded for producing the selected output, i.e., resources that would not be neededif the selected part of the output was not needed.
In order to construct a linked data visualization, we need to combine two of the dataanalyses. When the user selects a part of one chart, we annotate the relevant part of thestructured value that represents the chart with a selection α ∈ A that marks the part.We then use the backward data dependency analysis ⇒T to compute what resources areneeded for producing the output. To mark corresponding parts of another chart, we thenuse the dual forward dependency analysis ⇒T

◦. This marks parts of the other chart thatdepend on the resources needed for the first chart.
5.4 Contributions

L Key contributions. The publications included in Part V include two main contri-butions. They introduce a composable data visualization library based on novelfunctional design and a dynamic program analysis technique that enables easy con-struction of linked data visualizations.
In this chapter, I provided an overview of the contributions to data visualization includedin Part V. The focus of this work has been on simplifying the construction of rich interactivecharts that assist the viewer gain deeper insight into the presented data. While producingsimple charts is often easy, building a visualization that combines custom visual elements,interactivity and allows linking multiple charts requires advanced programming skills. Un-like with the work outlined in Chapter 4, I do not hope that the work presented here will

allow non-programmers to create rich interactive data visualizations. However, Compostand Fluid show that programming data visualisations that encourage critical thinking aboutdata can be significantly easier than using systems that are widely used today.The two contributions presented in this chapter also serve as a good justification forusing programming language research methods in the context of tools for data science. Inparticular, the work included as Chapter 12 relies on the minimalist design of highly com-posable functional (domain-specific) languages. It presents the Compost charting library,which lets programmers compose charts by combining a small number of primitives (suchas a filled shape or a text) using a small number of combinators (overlaying, nesting ofscales). The library is simple to use mainly due to the fact that all positions are specifiedin terms of domain units on a continuous numerical scale or a categorical scale (with 0 to1 range for each category).The work included as Chapter 13 uses dynamic program analysis techniques to auto-matically create linked data visualizationwhere the user can explore relationships betweendata in multiple charts. The system works by analyzing the program that is used to con-struct the chart from source data (by filtering and aggregating it in various ways). Whenthe user clicks on an element of a chart, the system uses two different dynamic depen-dency analysis techniques to highlight elements of other charts that depend on the samedata as the element selected by the user. The Chapter 13 uses methods of programminglanguage theory to describe the mechanism. We formalize the programming language,define two analyses, derive their duals, and describe their formal properties.Although the prototype implementation of the two systems is not currently integrated,the two contributions presented in this chapter are closely related. In particular, the pro-gram analysis techniques developed for Fluid would combine well with a composable datavisualization library like Compost.In this chapter, I also completed one loop of the data science lifecycle illustrated inFigure 1.4. The loop started with data acquisition using type providers, continued withdata cleaning and exploring using novel notebook systems and iterative prompting andnow concludes with data visualization. This is the last step in an exploratory phase of thedata science lifecycle where the aim is to understand and explain interesting aspects ofdata. An illuminating data visualization that conveys interesting insights found in data isoften the end goal of the process. The production phase that aims to turn the result of thedata analysis into a running component of a larger system is perhaps equally interestingbut is out of scope for this thesis.

Part II

Publications: Type providers

65

Chapter 6

Types from data: Making structured data first-class
citizens in F#

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477–490. https:
//doi.org/10.1145/2908080.2908115

66

https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115

Types from data: Making structured data first-class citizens in F#

Tomas Petricek
University of Cambridge

tomas@tomasp.net

Gustavo Guerra
Microsoft Corporation, London

gustavo@codebeside.org

Don Syme
Microsoft Research, Cambridge

dsyme@microsoft.com

Abstract
Most modern applications interact with external services and
access data in structured formats such as XML, JSON and
CSV. Static type systems do not understand such formats,
often making data access more cumbersome. Should we give
up and leave the messy world of external data to dynamic
typing and runtime checks? Of course, not!

We present F# Data, a library that integrates external
structured data into F#. As most real-world data does not
come with an explicit schema, we develop a shape inference
algorithm that infers a shape from representative sample
documents. We then integrate the inferred shape into the F#
type system using type providers. We formalize the process
and prove a relative type soundness theorem.

Our library significantly reduces the amount of data ac-
cess code and it provides additional safety guarantees when
contrasted with the widely used weakly typed techniques.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords F#, Type Providers, Inference, JSON, XML

1. Introduction
Applications for social networks, finding tomorrow’s weather
or searching train schedules all communicate with external
services. Increasingly, these services provide end-points that
return data as CSV, XML or JSON. Most such services do
not come with an explicit schema. At best, the documenta-
tion provides sample responses for typical requests.

For example, http://openweathermap.org/current con-
tains one example to document an end-point to get the cur-
rent weather. Using standard libraries, we might call it as1:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI ’16 June 13–17, 2016, Santa Barbara, CA, United States
Copyright c© 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

let doc = Http.Request("http://api.owm.org/?q=NYC")
match JsonValue.Parse(doc) with
| Record(root)→
match Map.�nd "main" root with
| Record(main)→
match Map.�nd "temp" main with
| Number(num)→ printfn "Lovely %f!" num
| _→ failwith "Incorrect format"
| _→ failwith "Incorrect format"

| _→ failwith "Incorrect format"

The code assumes that the response has a particular shape
described in the documentation. The root node must be a
record with a main field, which has to be another record
containing a numerical temp field representing the current
temperature. When the shape is different, the code fails.
While not immediately unsound, the code is prone to errors
if strings are misspelled or incorrect shape assumed.

Using the JSON type provider from F# Data, we can write
code with exactly the same functionality in two lines:

type W = JsonProvider "http://api.owm.org/?q=NYC"

printfn "Lovely %f!" (W.GetSample().Main.Temp)

JsonProvider "..." invokes a type provider [23] at compile-
time with the URL as a sample. The type provider infers the
structure of the response and provides a type with a GetSam-
plemethod that returns a parsed JSON with nested properties
Main.Temp, returning the temperature as a number.

In short, the types come from the sample data. In our
experience, this technique is both practical and surprisingly
effective in achieving more sound information interchange
in heterogeneous systems. Our contributions are as follows:

• We present F# Data type providers for XML, CSV and
JSON (§2) and practical aspects of their implementation
that contributed to their industrial adoption (§6).

• We describe a predictable shape inference algorithm for
structured data formats, based on a preferred shape rela-
tion, that underlies the type providers (§3).

• We give a formal model (§4) and use it to prove relative
type safety for the type providers (§5).

1 We abbreviate the full URL and omit application key (available after
registration). The returned JSON is shown in Appendix A and can be
used to run the code against a local file.

2. Type providers for structured data
We start with an informal overview that shows how F# Data
type providers simplify working with JSON and XML. We
introduce the necessary aspects of F# type providers along
the way. The examples in this section also illustrate the key
design principles of the shape inference algorithm:

• The mechanism is predictable (§6.5). The user directly
works with the provided types and should understand
why a specific type was produced from a given sample.

• The type providers prefer F# object types with properties.
This allows extensible (open-world) data formats (§2.2)
and it interacts well with developer tooling (§2.1).

• The above makes our techniques applicable to any lan-
guage with nominal object types (e.g. variations of Java
or C# with a type provider mechanism added).

• Finally, we handle practical concerns including support
for different numerical types, null and missing data.

The supplementary screencast provides further illustration
of the practical developer experience using F# Data.2

2.1 Working with JSON documents
The JSON format is a popular data exchange format based
on JavaScript data structures. The following is the definition
of JsonValue used earlier (§1) to represent JSON data:

type JsonValue =

| Number of �oat
| Boolean of bool
| String of string
| Record of Map string, JsonValue

| Array of JsonValue[]
| Null

The earlier example used only a nested record containing
a number. To demonstrate other aspects of the JSON type
provider, we look at an example that also involves an array:

[{ "name":"Jan", "age":25 },

{ "name":"Tomas" },

{ "name":"Alexander", "age":3.5 }]

The standard way to print the names and ages would be to
pattern match on the parsed JsonValue, check that the top-
level node is a Array and iterate over the elements checking
that each element is a Record with certain properties. We
would throw an exception for values of an incorrect shape.
As before, the code would specify field names as strings,
which is error prone and can not be statically checked.

Assuming people.json is the above example and data is a
string containing JSON of the same shape, we can write:

type People = JsonProvider "people.json"

for item in People.Parse(data) do

printf "%s " item.Name

Option.iter (printf "(%f)") item.Age

We now use a local file as a sample for the type inference, but
then processes data from another source. The code achieves
a similar simplicity as when using dynamically typed lan-
guages, but it is statically type-checked.

Type providers. The notation JsonProvider "people.json"
passes a static parameter to the type provider. Static pa-
rameters are resolved at compile-time and have to be con-
stant. The provider analyzes the sample and provides a
type People. F# editors also execute the type provider at
development-time and use the provided types for auto-
completion on “.” and for background type-checking.

The JsonProvider uses a shape inference algorithm and
provides the following F# types for the sample:

type Entity =
member Name : string
member Age : option �oat

type People =
member GetSample : unit → Entity[]
member Parse : string → Entity[]

The type Entity represents the person. The field Name is
available for all sample values and is inferred as string.
The field Age is marked as optional, because the value is
missing in one sample. In F#, we use Option.iter to call the
specified function (printing) only when an optional value is
available. The two age values are an integer 25 and a float
3.5 and so the common inferred type is �oat. The names of
the properties are normalized to follow standard F# naming
conventions as discussed later (§6.3).

The type People has two methods for reading data. Get-
Sample parses the sample used for the inference and Parse
parses a JSON string. This lets us read data at runtime, pro-
vided that it has the same shape as the static sample.

Error handling. In addition to the structure of the types,
the type provider also specifies the code of operations such
as item.Name. The runtime behaviour is the same as in the
earlier hand-written sample (§1) – a member access throws
an exception if data does not have the expected shape.

Informally, the safety property (§5) states that if the in-
puts are compatible with one of the static samples (i.e. the
samples are representative), then no exceptions will occur. In
other words, we cannot avoid all failures, but we can prevent
some. Moreover, if http://openweathermap.org changes
the shape of the response, the code in §1 will not re-compile
and the developer knows that the code needs to be corrected.

Objects with properties. The sample code is easy to write
thanks to the fact that most F# editors provide auto-completion
when “.” is typed (see the supplementary screencast). The
developer does not need to examine the sample JSON file to
see what fields are available. To support this scenario, our
type providers map the inferred shapes to F# objects with
(possibly optional) properties.

2 Available at http://tomasp.net/academic/papers/fsharp-data.

This is demonstrated by the fact that Age becomes an
optional member. An alternative is to provide two different
record types (one with Name and one with Name and Age),
but this would complicate the processing code. It is worth
noting that languages with stronger tooling around pattern
matching such as Idris [12] might have different preferences.

2.2 Processing XML documents
XML documents are formed by nested elements with at-
tributes. We can view elements as records with a field for
each attribute and an additional special field for the nested
contents (which is a collection of elements).

Consider a simple extensible document format where a
root element <doc> can contain a number of document ele-
ments, one of which is <heading> representing headings:

<doc>

<heading>Working with JSON</heading>

<p>Type providers make this easy.</p>

<heading>Working with XML</heading>

<p>Processing XML is as easy as JSON.</p>

<image source="xml.png" />

</doc>

The F# Data library has been designed primarily to simplify
reading of data. For example, say we want to print all head-
ings in the document. The sample shows a part of the doc-
ument structure (in particular the <heading> element), but it
does not show all possible elements (say, <table>). Assum-
ing the above document is sample.xml, we can write:

type Document = XmlProvider "sample.xml"

let root = Document.Load("pldi/another.xml")
for elem in root.Doc do
Option.iter (printf " - %s") elem.Heading

The example iterates over a collection of elements returned
by root.Doc. The type of elem provides typed access to
elements known statically from the sample and so we can
write elem.Heading, which returns an optional string value.

Open world. By its nature, XML is extensible and the sam-
ple cannot include all possible nodes.3 This is the fundamen-
tal open world assumption about external data. Actual input
might be an element about which nothing is known.

For this reason, we do not infer a closed choice between
heading, paragraph and image. In the subsequent formaliza-
tion, we introduce a top shape (§3.1) and extend it with la-
bels capturing the statically known possibilities (§3.5). The
labelled top shape is mapped to the following type:

type Element =

member Heading : option string
member Paragraph : option string
member Image : option Image

Element is an abstract type with properties. It can represent
the statically known elements, but it is not limited to them.
For a table element, all three properties would return None.

Using a type with optional properties provides access to
the elements known statically from the sample. However the
user needs to explicitly handle the case when a value is not a
statically known element. In object-oriented languages, the
same could be done by providing a class hierarchy, but this
loses the easy discoverability when “.” is typed.

The provided type is also consistent with our design prin-
ciples, which prefers optional properties. The gain is that the
provided types support both open-world data and developer
tooling. It is also worth noting that our shape inference uses
labelled top shapes only as the last resort (Lemma 1, §6.4).

2.3 Real-world JSON services
Throughout the introduction, we used data sets that demon-
strate the typical problems frequent in the real-world (miss-
ing data, inconsistent encoding of primitive values and het-
erogeneous shapes). The government debt information re-
turned by the World Bank4 includes all three:

[{ "pages": 5 },

[{ "indicator": "GC.DOD.TOTL.GD.ZS",

"date": "2012", "value": null },

{ "indicator": "GC.DOD.TOTL.GD.ZS",

"date": "2010", "value": "35.14229" }]]

First, the field value is null for some records. Second, num-
bers in JSON can be represented as numeric literals (without
quotes), but here, they are returned as string literals instead.5

Finally, the top-level element is a collection containing two
values of different shape. The record contains meta-data with
the total number of pages and the array contains the data. F#
Data supports a concept of heterogeneous collection (out-
lined in in §6.4) and provides the following type:

type Record =
member Pages : int

type Item =
member Date : int
member Indicator : string
member Value : option �oat

type WorldBank =
member Record : Record
member Array : Item[]

The inference for heterogeneous collections infers the mul-
tiplicities and shapes of nested elements. As there is exactly
one record and one array, the provided type WorldBank ex-
poses them as properties Record and Array.

In addition to type providers for JSON and XML, F# Data
also implements a type provider for CSV (§6.2). We treat
CSV files as lists of records (with field for each column) and
so CSV is handled directly by our inference algorithm.

3 Even when the document structure is defined using XML Schema,
documents may contain elements prefixed with other namespaces.

4 Available at http://data.worldbank.org
5 This is often used to avoid non-standard numerical types of JavaScript.

3. Shape inference for structured data
The shape inference algorithm for structured data is based
on a shape preference relation. When inferring the shape,
it infers the most specific shapes of individual values (CSV
rows, JSON or XML nodes) and recursively finds a common
shape of all child nodes or all sample documents.

We first define the shape of structured data σ. We use the
term shape to distinguish shapes of data from programming
language types τ (type providers generate the latter from the
former). Next, we define the preference relation on shapes σ
and describe the algorithm for finding a common shape.

The shape algebra and inference presented here is influ-
enced by the design principles we outlined earlier and by the
type definitions available in the F# language. The same prin-
ciples apply to other languages, but details may differ, for
example with respect to numerical types and missing data.

3.1 Inferred shapes
We distinguish between non-nullable shapes that always
have a valid value (written as σ̂) and nullable shapes that
encompass missing and null values (written as σ). We write
ν for record names and record field names.

σ̂ = ν {ν1 :σ1, . . . , νn :σn, ρi}
| �oat | int | bool | string

σ = σ̂ | nullable σ̂ | [σ] | any | null | ⊥
Non-nullable shapes include records (consisting of a name
and fields with their shapes) and primitives. The row vari-
ables ρi are discussed below. Names of records arising from
XML are the names of the XML elements. For JSON records
we always use a single name •. We assume that record fields
can be freely reordered.

We include two numerical primitives, int for integers and
�oat for floating-point numbers. The two are related by the
preference relation and we prefer int.

Any non-nullable shape σ̂ can be wrapped as nullable σ̂
to explicitly permit the null value. Type providers map nul-
lable shapes to the F# option type. A collection [σ] is also
nullable and null values are treated as empty collections.
This is motivated by the fact that a null collection is usu-
ally handled as an empty collection by client code. However
there is a range of design alternatives (make collections non-
nullable or treat null string as an empty string).

The shape null is inhabited by the null value (using an
overloaded notation) and ⊥ is the bottom shape. The any
shape is the top shape, but we later add labels for statically
known alternative shapes (§3.5) as discussed earlier (§2.2).

During inference we use row-variables ρi [1] in record
shapes to represent the flexibility arising from records in
samples. For example, when a record Point {x 7→ 3} occurs
in a sample, it may be combined with Point { x 7→ 3, y 7→ 4}
that contains more fields. The overall shape inferred must
account for the fact that any extra fields are optional, giving
an inferred shape Point {x : int, y :nullable int }.

any

stringν {ν1:σ1, , νn:σn}

float

bool

int

any

string?ν {ν1:σ1, , νn:σn}?

null

float?

bool?

int?

[σ]

Non-nullable shapes

Nullable shapes

Figure 1. Important aspects of the preferred shape relation

3.2 Preferred shape relation
Figure 1 provides an intuition about the preference between
shapes. The lower part shows non-nullable shapes (with
records and primitives) and the upper part shows nullable
shapes with null, collections and nullable shapes. In the dia-
gram, we abbreviate nullable σ as σ? and we omit links be-
tween the two parts; a shape σ̂ is preferred over nullable σ̂ .

Definition 1. For ground σ1, σ2 (i.e. without ρi variables),
we write σ1 v σ2 to denote that σ1 is preferred over σ2. The
shape preference relation is defined as a transitive reflexive
closure of the following rules:

int v �oat (1)
null v σ (for σ 6= σ̂) (2)
σ̂ v nullable σ̂ (for all σ̂) (3)

nullable σ̂1 v nullable σ̂2 (if σ̂1 v σ̂2) (4)
[σ1] v [σ2] (if σ1 v σ2) (5)
⊥ v σ (for all σ) (6)
σ v any (7)

ν {ν1 :σ1, .., νn :σn} v
ν {ν1 :σ′1, .., νn :σ′n}

(if σi v σ′i) (8)

ν {ν1 :σ1, .., νn :σn} v
ν {ν1 :σ1, .., .., νm :σm} (when m ≤ n) (9)

Here is a summary of the key aspects of the definition:

• Numeric shape with smaller range is preferred (1) and we
choose 32-bit int over �oat when possible.

• The null shape is preferred over all nullable shapes (2),
i.e. all shapes excluding non-nullable shapes σ̂. Any non-
nullable shape is preferred over its nullable version (3)

• Nullable shapes and collections are covariant (4, 5).
• There is a bottom shape (6) and any behaves as the top

shape, because any shape σ is preferred over any (7).
• The record shapes are covariant (8) and preferred record

can have additional fields (9).

csh(σ, σ) = σ (eq)
csh([σ1], [σ2]) = [csh(σ1, σ2)] (list)

csh(⊥, σ) = csh(σ,⊥) = σ (bot)
csh(null, σ) = csh(σ, null) = dσe (null)
csh(any, σ) = csh(σ, any) = any (top)

csh(�oat, int) = csh(int, �oat) = �oat (num)
csh(σ2, nullable σ̂1) = csh(nullable σ̂1 , σ2) = dcsh(σ̂1, σ2)e (opt)

csh(ν {ν1 :σ1, . . . , νn :σn}, ν {ν1 :σ′1, . . . , νn :σ′n}) = ν {ν1 :csh(σ1, σ
′
1), . . . , νn :csh(σn, σ

′
n)} (recd)

csh(σ1, σ2) = any (when σ1 6= ν {. . .} or σ2 6= ν {. . .}) (any)

dσ̂e = nullable σ̂ (non-nullable shapes)
dσe = σ (otherwise)

bnullable σ̂ c = σ̂ (nullable shape)
bσc = σ (otherwise)

Figure 2. The rules that define the common preferred shape function

3.3 Common preferred shape relation
Given two ground shapes, the common preferred shape is the
least upper bound of the shape with respect to the preferred
shape relation. The least upper bound prefers records, which
is important for usability as discussed earlier (§2.2).

Definition 2. A common preferred shape of two ground
shapes σ1 and σ2 is a shape csh(σ1, σ2) obtained according
to Figure 2. The rules are matched from top to bottom.

The fact that the rules of csh are matched from top to bottom
resolves the ambiguity between certain rules. Most impor-
tantly (any) is used only as the last resort.

When finding a common shape of two records (recd)
we find common preferred shapes of their respective fields.
We can find a common shape of two different numbers
(num); for two collections, we combine their elements (list).
When one shape is nullable (opt), we find the common non-
nullable shape and ensure the result is nullable using d−e,
which is also applied when one of the shapes is null (null).

When defined, csh finds the unique least upper bound of
the partially ordered set of ground shapes (Lemma 1).

Lemma 1 (Least upper bound). For ground σ1 and σ2, if
csh(σ1, σ2) ` σ then σ is a least upper bound by w.

Proof. By induction over the structure of the shapes σ1, σ2.
Note that csh only infers the top shape any when on of the
shapes is the top shape (top) or when there is no other option
(any); a nullable shape is introduced in d−e only when no
non-nullable shape can be used (null), (opt).

3.4 Inferring shapes from samples
We now specify how we obtain the shape from data. As
clarified later (§6.2), we represent JSON, XML and CSV
documents using the same first-order data value:

d = i | f | s | true | false | null
| [d1; . . . ; dn] | ν {ν1 7→ d1, . . . , νn 7→ dn}

The definition includes primitive values (i for integers, f for
floats and s for strings) and null. A collection is written as a
list of values in square brackets. A record starts with a name
ν, followed by a sequence of field assignments νi 7→ di.

Figure 3 defines a mapping S(d1, . . . , dn) which turns a
collection of sample data d1, . . . , dn into a shape σ. Before
applying S, we assume each record in each di is marked
with a fresh row inference variable ρi. We then choose a
ground, minimal substitution θ for row variables. Because
ρi variables represent potentially missing fields, the d−e
operator from Figure 2 is applied to all types in the vector.

This is sufficient to equate the record field labels and
satisfy the pre-conditions in rule (recd) when multiple record
shapes are combined. The csh function is not defined for
two records with mis-matching fields, however, the fields
can always be made to match, through a substitution for row
variables. In practice, θ is found via row variable unification
[17]. We omit the details here. No ρi variables remain after
inference as the substitution chosen is ground.

Primitive values are mapped to their corresponding shapes.
When inferring a shape from multiple samples, we use the
common preferred shape relation to find a common shape
for all values (starting with ⊥). This operation is used when
calling a type provider with multiple samples and also when
inferring the shape of collection values.

S(i) = int S(null) = null S(true) = bool
S(f) = �oat S(s) = string S(false) = bool

S([d1; . . . ; dn]) = [S(d1, . . . , dn)]

S(ν {ν1 7→ d1, . . . , νn 7→ dn}ρi) =

ν {ν1 : S(d1), . . . , νn : S(dn), dθ(ρi)e}
S(d1, . . . , dn) = σn where

σ0 = ⊥, ∀i ∈ {1..n}. σi−1OS(di) ` σi
Choose minimal θ by ordering v lifted over substitutions

Figure 3. Shape inference from sample data

tag = collection | number
| nullable | string
| ν | any | bool

tagof(string) = string
tagof(bool) = bool
tagof(int) = number

tagof(�oat) = number

tagof(any σ1, . . . , σn) = any
tagof(ν {ν1 : σ1, . . . , νn : σn}) = ν

tagof(nullable σ̂) = nullable
tagof([σ]) = collection

csh(any σ1, . . . , σk, . . . , σn , any σ′1, . . . , σ
′
k, . . . , σ

′
m) =

any csh(σ1, σ
′
1), . . . , csh(σk, σ

′
k), σk+1, . . . , σn, σ

′
k+1, . . . , σ

′
m

For i, j such that (tagof(σi) = tagof(σ′j))⇔ (i = j) ∧ (i ≤ k)

(top-merge)

csh(σ, any σ1, . . . , σn) = csh(any σ1, . . . , σn , σ) =
any σ1, . . . , bcsh(σ, σi)c, . . . , σn
For i such that tagof(σi) = tagof(bσc)

(top-incl)

csh(σ, any σ1, . . . , σn) = any σ1, . . . , σn, bσc (top-add)

csh(σ1, σ2) = any〈bσ1c, bσ2c〉 (top-any)

Figure 4. Extending the common preferred shape relation for labelled top shapes

3.5 Adding labelled top shapes
When analyzing the structure of shapes, it suffices to con-
sider a single top shape any. The type providers need more
information to provide typed access to the possible alterna-
tive shapes of data, such as XML nodes.

We extend the core model (sufficient for the discussion of
relative safety) with labelled top shapes defined as:

σ = . . . | any σ1, . . . , σn
The shapes σ1, . . . , σn represent statically known shapes
that appear in the sample and that we expose in the provided
type. As discussed earlier (§2.2) this is important when read-
ing external open world data. The labels do not affect the
preferred shape relation and any σ1, . . . , σn should still be
seen as the top shape, regardless of the labels6.

The common preferred shape function is extended to find
a labelled top shape that best represents the sample. The new
rules for any appear in Figure 4. We define shape tags to
identify shapes that have a common preferred shape which is
not the top shape. We use it to limit the number of labels and
avoid nesting by grouping shapes by the shape tag. Rather
than inferring any int, any bool, �oat , our algorithm joins
int and �oat and produces any �oat, bool .

When combining two top shapes (top-merge), we group
the annotations by their tags. When combining a top with an-
other shape, the labels may or may not already contain a case
with the tag of the other shape. If they do, the two shapes
are combined (top-incl), otherwise a new case is added (top-
add). Finally, (top-all) replaces earlier (any) and combines
two distinct non-top shapes. As top shapes implicitly permit
null values, we make the labels non-nullable using b−c.

The revised algorithm still finds a shape which is the least
upper bound. This means that labelled top shape is only
inferred when there is no other alternative.

Stating properties of the labels requires refinements to the
preferred shape relation. We leave the details to future work,
but we note that the algorithm infers the best labels in the
sense that there are labels that enable typed access to every
possible value in the sample, but not more. The same is the
case for nullable fields of records.

4. Formalizing type providers
This section presents the formal model of F# Data integra-
tion. To represent the programming language that hosts the
type provider, we introduce the Foo calculus, a subset of
F# with objects and properties, extended with operations for
working with weakly typed structured data along the lines of
the F# Data runtime. Finally, we describe how type providers
turn inferred shapes into Foo classes (§4.2).

τ = int | �oat | bool | string | C | Data
| τ1 → τ2 | list τ | option τ

L = type C(x : τ) = M
M = member N : τ = e

v = d | None | Some(v) | new C(v) | v1 :: v2
e = d | op | e1 e2 | λx.e | e.N | new C(e)
| None | match e with Some(x)→ e1 |None→ e2
| Some(e) | e1 = e2 | if e1 then e2 else e3 | nil
| e1 :: e2 | match e with x1 :: x2 → e1 | nil→ e2

op = convFloat(σ, e) | convPrim(σ, e)
| convField(ν1, ν2, e, e) | convNull(e1, e2)
| convElements(e1, e2) | hasShape(σ, e)

Figure 5. The syntax of the Foo calculus
6 An alternative would be to add unions of shapes, but doing so in a way

that is compatible with the open-world assumption breaks the existence
of unique lower bound of the preferred shape relation.

Part I. Reduction rules for conversion functions

hasShape(ν {ν1 :σ1, . . . , νn :σn}, ν′ {ν′1 7→ d1, . . . , ν
′
m 7→ dm}) (ν = ν′) ∧

(((ν1 = ν′1) ∧ hasShape(σ1, d1)) ∨ . . . ∨ ((ν1 = ν′m) ∧ hasShape(σ1, dm)) ∨ . . .∨
((νn = ν′1) ∧ hasShape(σn, d1)) ∨ . . . ∨ ((νn = ν′m) ∧ hasShape(σn, dm)))

hasShape([σ], [d1; . . . ; dn]) hasShape(σ, d1) ∧ . . . ∧ hasShape(σ, dn)
hasShape([σ], null) true

convFloat(�oat, i) f (f = i)
convFloat(�oat, f) f

convNull(null, e) None
convNull(d, e) Some(e d)

hasShape(string, s) true
hasShape(int, i) true
hasShape(bool, d) true (when d ∈ true, false)
hasShape(�oat, d) true (when d = i or d = f)
hasShape(_, _) false

convPrim(σ, d) d (σ, d ∈ {(int, i), (string, s), (bool, b)})
convField(ν, νi, ν {. . . , νi = di, . . .}, e) e di
convField(ν, ν′, ν {. . . , νi = di, . . .}, e) e null (@i.νi = ν′)

convElements([d1; . . . ; dn], e) e d1 :: . . . :: e dn :: nil
convElements(null) nil

Part II. Reduction rules for the rest of the Foo calculus

(member)
type C(x : τ) = member Ni : τi = ei . . . ∈ L

L, (new C(v)).Ni ei[x← v]

(cond1) if true then e1 else e2 e1

(cond2) if false then e1 else e2 e2

(eq1) v = v′ true (when v = v′)

(eq2) v = v′ false (when v 6= v′)

(fun) (λx.e) v e[x← v]

(match1)
match None with
Some(x)→ e1 |None→ e2

 e2

(match2)
match Some(v) with
Some(x)→ e1 |None→ e2

 e1[x← v]

(match3)
match nil with
x1 :: x2 → e1 | nil→ e2

 e2

(match4)
match v1 :: v2 with
x1 :: x2 → e1 | nil→ e2

 e1[x← v]

(ctx) E[e] E[e′] (when e e′)

Figure 6. Foo – Reduction rules for the Foo calculus and dynamic data operations

Type providers for structured data map the “dirty” world
of weakly typed structured data into a “nice” world of strong
types. To model this, the Foo calculus does not have null
values and data values d are never directly exposed. Further-
more Foo is simply typed: despite using class types and ob-
ject notation for notational convenience, it has no subtyping.

4.1 The Foo calculus
The syntax of the calculus is shown in Figure 5. The type
Data is the type of structural data d. A class definition L
consists of a single constructor and zero or more parameter-
less members. The declaration implicitly closes over the
constructor parameters. Values v include previously defined
data d; expressions e include class construction, member
access, usual functional constructs (functions, lists, options)
and conditionals. The op constructs are discussed next.

Dynamic data operations. The Foo programs can only
work with Data values using certain primitive operations.
Those are modelled by the op primitives. In F# Data, those
are internal and users never access them directly.

The behaviour of the dynamic data operations is defined
by the reduction rules in Figure 6 (Part I). The typing is
shown in Figure 7 and is discussed later. The hasShape

function represents a runtime shape test. It checks whether
a Data value d (Section 3.4) passed as the second argument
has a shape specified by the first argument. For records, we
have to check that for each field ν1, . . . , νn in the record,
the actual record value has a field of the same name with a
matching shape. The last line defines a “catch all” pattern,
which returns false for all remaining cases. We treat e1 ∨ e2
and e1 ∧ e2 as a syntactic sugar for if . . then . . else so the
result of the reduction is just a Foo expression.

The remaining operations convert data values into values
of less preferred shape. The convPrim and convFloat oper-
ations take the required shape and a data value. When the
data does not match the required type, they do not reduce.
For example, convPrim(bool, 42) represents a stuck state,
but convFloat(�oat, 42) turns an integer 42 into a floating-
point numerical value 42.0.

The convNull, convElements and convField operations
take an additional parameter e which represents a function
to be used in order to convert a contained value (non-null
optional value, list elements or field value); convNull turns
null data value into None and convElements turns a data
collection [d1, . . . , dn] into a Foo list v1 :: . . . :: vn :: nil
and a null value into an empty list.

L; Γ ` d : Data L; Γ ` i : int L; Γ ` f : �oat

L; Γ, x : τ1 ` e : τ2
L; Γ ` λx.e : τ2

L; Γ ` e2 : τ1 L; Γ ` e1 : τ1 → τ2
L; Γ ` e1 e2 : τ2

L; Γ ` e : Data

L; Γ ` hasShape(σ, e) : bool

L; Γ ` e : Data τ ∈ {int, �oat}
L; Γ ` convFloat(σ, e) : �oat

L; Γ ` e1 : Data L; Γ ` e2 : Data→ τ

L; Γ ` convNull(e1, e2) : option〈τ〉

L; Γ ` e : Data
prim ∈ {int, string, bool}

L; Γ ` convPrim(prim, e) : prim

L; Γ ` e1 : Data
L; Γ ` e2 : Data→ τ

L; Γ ` convElements(e1, e2) : list〈τ〉

L; Γ ` e1 : Data
L; Γ ` e2 : Data→ τ

L; Γ ` convField(ν, ν′, e1, e2) : τ

L; Γ ` e : C
type C(x : τ) = .. member Ni : τi = ei .. ∈ L

L; Γ ` e.Ni : τi

L; Γ ` ei : τi type C(x1 : τ1, . . . , xn : τn) = . . . ∈ L
L; Γ ` new C(e1, . . . , en) : C

Figure 7. Foo – Fragment of type checking

Reduction. The reduction relation is of the formL, e e′.
We omit class declarations L where implied by the context
and write e ∗ e′ for the reflexive, transitive closure of .

Figure 6 (Part II) shows the reduction rules. The (mem-
ber) rule reduces a member access using a class definition
in the assumption. The (ctx) rule models the eager evalua-
tion of F# and performs a reduction inside a sub-expression
specified by an evaluation context E:

E = v :: E | v E | E.N | new C(v,E, e)

| if E then e1 else e2 | E = e | v = E

| Some(E) | op(v,E, e)
| match E with Some(x)→ e1 |None→ e2
| match E with x1 :: x2 → e1 | nil→ e2

The evaluation proceeds from left to right as denoted by
v,E, e in constructor and dynamic data operation arguments
or v :: E in list initialization. We write e[x ← v] for the
result of replacing variables x by values v in an expression.
The remaining six rules give standard reductions.

Type checking. Well-typed Foo programs reduce to a
value in a finite number of steps or get stuck due to an error
condition. The stuck states can only be due to the dynamic
data operations (e.g. an attempt to convert null value to a
number convFloat(�oat, null)). The relative safety (Theo-
rem 3) characterizes the additional conditions on input data
under which Foo programs do not get stuck.

Typing rules in Figure 7 are written using a judgement
L; Γ ` e : τ where the context also contains a set of class
declarations L. The fragment demonstrates the differences
and similarities with Featherweight Java [10] and typing
rules for the dynamic data operations op:

– All data values d have the type Data, but primitive data
values (Booleans, strings, integers and floats) can be im-
plicitly converted to Foo values and so they also have a
primitive type as illustrated by the rule for i and f .

– For non-primitive data values (including null, data col-
lections and records), Data is the only type.

– Operations op accept Data as one of the arguments and
produce a non-Data Foo type. Some of them require a
function specifying the conversion for nested values.

– Rules for checking class construction and member access
are similar to corresponding rules of Featherweight Java.

An important part of Featherweight Java that is omitted here
is the checking of type declarations (ensuring the members
are well-typed). We consider only classes generated by our
type providers and those are well-typed by construction.

4.2 Type providers
So far, we defined the type inference algorithm which pro-
duces a shape σ from one or more sample documents (§3)
and we defined a simplified model of evaluation of F# (§4.1)
and F# Data runtime (§4.2). In this section, we define how
the type providers work, linking the two parts.

All F# Data type providers take (one or more) sample
documents, infer a common preferred shape σ and then use
it to generate F# types that are exposed to the programmer.7

Type provider mapping. A type provider produces an F#
type τ together with a Foo expression and a collection of
class definitions. We express it using the following mapping:

JσK = (τ, e, L) (where L, ∅ ` e : Data→ τ)

The mapping JσK takes an inferred shape σ. It returns an F#
type τ and a function that turns the input data (value of type
Data) into a Foo value of type τ . The type provider also
generates class definitions that may be used by e.

Figure 8 defines J−K. Primitive types are handled by a
single rule that inserts an appropriate conversion function;
convPrim just checks that the shape matches and convFloat
converts numbers to a floating-point.

7 The actual implementation provides erased types as described in [23].
Here, we treat the code as actually generated. This is an acceptable
simplification, because F# Data type providers do not rely on laziness or
erasure of type provision.

JσpK = τp, λx.op(σp, x), ∅ where

σp, τp, op ∈ { (bool, bool, convPrim)
(int, int, convPrim), (�oat, �oat, convFloat),
(string, string, convPrim) }

J ν {ν1 : σ1, . . . , νn : σn} K =

C, λx.new C(x), L1 ∪ . . . ∪ Ln ∪ {L} where

C is a fresh class name
L = type C(x1 :Data) = M1 . . .Mn

Mi = member νi : τi = convField(ν, νi, x1, ei),
τi, ei, Li = JσiK

J [σ] K = list τ , λx.convElements(x, e′), L where

τ, e′, L = Jσ̂K

J any σ1, . . . , σn K =
C, λx.new C(x), L1 ∪ . . . ∪ Ln ∪ {L} where

C is a fresh class name
L = type C(x : Data) = M1 . . .Mn

Mi = member νi : option τi =
if hasShape(σi, x) then Some(ei x) else None

τi, ei, Li = JσiKe, νi = tagof(σi)

Jnullable σ̂ K =

option τ , λx.convNull(x, e), L

where τ, e, L = Jσ̂K

J⊥K = JnullK = C, λx.new C(x), {L} where

C is a fresh class name
L = type C(v : Data)

Figure 8. Type provider – generation of Foo types from inferred structural types

For records, we generate a class C that takes a data value
as a constructor parameter. For each field, we generate a
member with the same name as the field. The body of the
member calls convField with a function obtained from JσiK.
This function turns the field value (data of shape σi) into a
Foo value of type τi. The returned expression creates a new
instance of C and the mapping returns the class C together
with all recursively generated classes. Note that the class
name C is not directly accessed by the user and so we can
use an arbitrary name, although the actual implementation in
F# Data attempts to infer a reasonable name.8

A collection shape becomes a Foo list τ . The returned
expression calls convElements (which returns the empty list
for data value null). The last parameter is the recursively ob-
tained conversion function for the shape of elements σ. The
handling of the nullable shape is similar, but uses convNull.

As discussed earlier, labelled top shapes are also gener-
ated as Foo classes with properties. Given any σ1, . . . , σn ,
we get corresponding F# types τi and generate n members
of type option τi . When the member is accessed, we need
to perform a runtime shape test using hasShape to ensure
that the value has the right shape (similarly to runtime type
conversions from the top type in languages like Java). If the
shape matches, a Some value is returned. The shape infer-
ence algorithm also guarantees that there is only one case
for each shape tag (§3.3) and so we can use the tag for the
name of the generated member.

Example 1. To illustrate how the mechanism works, we
consider two examples. First, assume that the inferred shape
is a record Person { Age :option int , Name : string }. The
rules from Figure 8 produce the Person class shown below
with two members.

The body of the Age member uses convField as specified
by the case for optional record fields. The field shape is nul-

lable and so convNull is used in the continuation to convert
the value to None if convField produces a null data value
and hasShape is used to ensure that the field has the cor-
rect shape. The Name value should be always available and
should have the right shape so convPrim appears directly in
the continuation. This is where the evaluation can get stuck
if the field value was missing:

type Person(x1 : Data) =

member Age : option int =

convField(Person,Age, x1, λx2 →
convNull(x2, λx3 → convPrim(int, x3)))

member Name : string =

convField(Person,Name, x1, λx2 →
convPrim(string, x2)))

The function to create the Foo value Person from a data
value is λx.new Person(x).

Example 2. The second example illustrates the handling of
collections and labelled top types. Reusing Person from the
previous example, consider [any Person {. . .}, string]:

type PersonOrString(x : Data) =

member Person : option Person =

if hasShape(Person {. . .}, x) then

Some(new Person(x)) else None

member String : option string =

if hasShape(string, x) then

Some(convPrim(string, x)) else None

The type provider maps the collection of labelled top shapes
to a type list PersonOrString and returns a function that
parses a data value as follows:

8 For example, in {"person":{"name":"Tomas"}}, the nested record
will be named Person based on the name of the parent record field.

λx1 → convElements(x1λx2 → new PersonOrString(x2))

The PersonOrString class contains one member for each of
the labels. In the body, they check that the input data value
has the correct shape using hasShape. This also implicitly
handles null by returning false. As discussed earlier, labelled
top types provide easy access to the known cases (string or
Person), but they require a runtime shape check.

5. Relative type safety
Informally, the safety property for structural type providers
states that, given representative sample documents, any code
that can be written using the provided types is guaranteed to
work. We call this relative safety, because we cannot avoid
all errors. In particular, one can always provide an input that
has a different structure than any of the samples. In this case,
it is expected that the code will throw an exception in the
implementation (or get stuck in our model).

More formally, given a set of sample documents, code
using the provided type is guaranteed to work if the inferred
shape of the input is preferred with respect to the shape of
any of the samples. Going back to §3.2, this means that:

– Input can contain smaller numerical values (e.g., if a
sample contains float, the input can contain an integer).

– Records in the input can have additional fields.

– Records in the input can have fewer fields than some of
the records in the sample document, provided that the
sample also contains records that do not have the field.

– When a labelled top type is inferred from the sample,
the actual input can also contain any other value, which
implements the open world assumption.

The following lemma states that the provided code (gener-
ated in Figure 8) works correctly on an input d′ that is a
subshape of d. More formally, the provided expression (with
input d′) can be reduced to a value and, if it is a class, all its
members can also be reduced to values.

Lemma 2 (Correctness of provided types). Given sample
data d and an input data value d′ such that S(d′) v S(d)
and provided type, expression and classes τ, e, L = JS(d)K,
then L, e d′ ∗ v and if τ is a class (τ = C) then for all
members Ni of the class C, it holds that L, (e d′).Ni ∗ v.

Proof. By induction over the structure of J−K. For prim-
itives, the conversion functions accept all subshapes. For
other cases, analyze the provided code to see that it can work
on all subshapes (for example convElements works on null
values, convFloat accepts an integer). Finally, for labelled
top types, the hasShape operation is used to guaranteed the
correct shape at runtime.

This shows that provided types are correct with respect to
the preferred shape relation. Our key theorem states that, for
any input which is a subshape the inferred shape and any

expression e, a well-typed program that uses the provided
types does not “go wrong”. Using standard syntactic type
safety [26], we prove type preservation (reduction does not
change type) and progress (an expression can be reduced).

Theorem 3 (Relative safety). Assume d1, . . . , dn are sam-
ples, σ = S(d1, . . . , dn) is an inferred shape and τ, e, L =
JσK are a type, expression and class definitions generated by
a type provider.

For all inputs d′ such that S(d′) v σ and all expressions
e′ (representing the user code) such that e′ does not contain
any of the dynamic data operations op and any Data values
as sub-expressions and L; y : τ ` e′ : τ ′, it is the case that
L, e[y ← e′ d′] ∗ v for some value v and also ∅;` v : τ ′.

Proof. We discuss the two parts of the proof separately as
type preservation (Lemma 4) and progress (Lemma 5).

Lemma 4 (Preservation). Given the τ, e, L generated by a
type provider as specified in the assumptions of Theorem 3,
then if L,Γ ` e : τ and L, e ∗ e′ then Γ ` e′ : τ .

Proof. By induction over . The cases for the ML subset
of Foo are standard. For (member), we check that code
generated by type providers in Figure 8 is well-typed.

The progress lemma states that evaluation of a well-typed
program does not reach an undefined state. This is not a
problem for the Standard ML [15] subset and object-oriented
subset [10] of the calculus. The problematic part are the
dynamic data operations (Figure 6, Part I). Given a data
value (of type Data), the reduction can get stuck if the value
does not have a structure required by a specific operation.

The Lemma 2 guarantees that this does not happen inside
the provided type. We carefully state that we only consider
expressions e′ which “[do] not contain primitive operations
op as sub-expressions”. This ensure that only the code gen-
erated by a type provider works directly with data values.

Lemma 5 (Progress). Given the assumptions and definitions
from Theorem 3, there exists e′′ such that e′[y ← e d′] e′′.

Proof. Proceed by induction over the typing derivation of
L; ∅ ` e[y ← e′ d′] : τ ′. The cases for the ML subset are
standard. For member access, we rely on Lemma 2.

6. Practical experience
The F# Data library has been widely adopted by users and
is one of the most downloaded F# libraries.9 A practical
demonstration of development using the library can be seen
in an attached screencast and additional documentation can
be found at http://fsharp.github.io/FSharp.Data.

In this section, we discuss our experience with the safety
guarantees provided by the F# Data type providers and other
notable aspects of the implementation.

9 At the time of writing, the library has over 125,000 downloads on NuGet
(package repository), 1,844 commits and 44 contributors on GitHub.

6.1 Relative safety in practice
The relative safety property does not guarantee safety in
the same way as traditional closed-world type safety, but
it reflects the reality of programming with external data
that is becoming increasingly important [16]. Type providers
increase the safety of this kind of programming.

Representative samples. When choosing a representative
sample document, the user does not need to provide a sam-
ple that represents all possible inputs. They merely need to
provide a sample that is representative with respect to data
they intend to access. This makes the task of choosing a rep-
resentative sample easier.

Schema change. Type providers are invoked at compile-
time. If the schema changes (so that inputs are no longer
related to the shape of the sample used at compile-time),
the program can fail at runtime and developers have to han-
dle the exception. The same problem happens when using
weakly-typed code with explicit failure cases.

F# Data can help discover such errors earlier. Our first
example (§1) points the JSON type provider at a sample us-
ing a live URL. This has the advantage that a re-compilation
fails when the sample changes, which is an indication that
the program needs to be updated to reflect the change.

Richer data sources. In general, XML, CSV and JSON
data sources without an explicit schema will necessarily re-
quire techniques akin to those we have shown. However,
some data sources provide an explicit schema with version-
ing support. For those, a type provider that adapts automati-
cally could be written, but we leave this for future work.

6.2 Parsing structured data
In our formalization, we treat XML, JSON and CSV uni-
formly as data values. With the addition of names for records
(for XML nodes), the definition of structural values is rich
enough to capture all three formats.10 However, parsing real-
world data poses a number of practical issues.

Reading CSV data. When reading CSV data, we read each
row as an unnamed record and return a collection of rows.
One difference between JSON and CSV is that in CSV, the
literals have no data types and so we also need to infer the
shape of primitive values. For example:

Ozone, Temp, Date, Autofilled

41, 67, 2012-05-01, 0

36.3, 72, 2012-05-02, 1

12.1, 74, 3 kveten, 0

17.5, #N/A, 2012-05-04, 0

The value #N/A is commonly used to represent missing val-
ues in CSV and is treated as null. The Date column uses
mixed formats and is inferred as string (we support many
date formats and “May 3” would be parsed as date). More
interestingly, we also infer Auto�led as Boolean, because
the sample contains only 0 and 1. This is handled by adding
a bit shape which is preferred of both int and bool.

Reading XML documents. Mapping XML documents to
structural values is more interesting. For each node, we cre-
ate a record. Attributes become record fields and the body
becomes a field with a special name. For example:

<root id="1">

<item>Hello!</item>

</root>

This XML becomes a record root with fields id and • for the
body. The nested element contains only the • field with the
inner text. As with CSV, we infer shape of primitive values:

root {id 7→ 1, • 7→ [item {• 7→ "Hello!"}]}

The XML type provider also includes an option to use global
inference. In that case, the inference from values (§3.4) uni-
fies the shapes of all records with the same name. This is use-
ful because, for example, in XHTML all <table> elements
will be treated as values of the same type.

6.3 Providing idiomatic F# types
In order to provide types that are easy to use and follow the
F# coding guidelines, we perform a number of transforma-
tions on the provided types that simplify their structure and
use more idiomatic naming of fields. For example, the type
provided for the XML document in §6.2 is:

type Root =
member Id : int
member Item : string

To obtain the type signature, we used the type provider as
defined in Figure 8 and applied three additional transforma-
tions and simplifications:

• When a class C contains a member •, which is a class
with further members, the nested members are lifted into
the class C. For example, the above type Root directly
contains Item rather than containing a member • return-
ing a class with a member Item.

• Remaining members named • in the provided classes
(typically of primitive types) are renamed to Value.

• Class members are renamed to follow PascalCase nam-
ing convention, when a collision occurs, a number is ap-
pended to the end as inPascalCase2. The provided imple-
mentation preforms the lookup using the original name.

Our current implementation also adds an additional mem-
ber to each class that returns the underlying JSON node
(called JsonValue) or XML element (called XElement).
Those return the standard .NET or F# representation of the
value and can be used to dynamically access data not ex-
posed by the type providers, such as textual values inside
mixed-content XML elements.
10 The same mechanism has later been used by the HTML type provider

(http://fsharp.github.io/FSharp.Data/HtmlProvider.html), which
provides similarly easy access to data in HTML tables and lists.

6.4 Heterogeneous collections
When introducing type providers (§2.3), we mentioned how
F# Data handles heterogeneous collections. This allows us
to avoid inferring labelled top shapes in many common sce-
narios. In the earlier example, a sample collection contains a
record (with pages field) and a nested collection with values.

Rather than storing a single shape for the collection el-
ements as in [σ], heterogeneous collections store multiple
possible element shapes together with their inferred multi-
plicity (exactly one, zero or one, zero or more):

ψ = 1? | 1 | ∗
σ = . . . | [σ1, ψ1| . . . |σn, ψn]

We omit the details, but finding a preferred common shape of
two heterogeneous collections is analogous to the handling
of labelled top types. We merge cases with the same tag (by
finding their common shape) and calculate their new shared
multiplicity (for example, by turning 1 and 1? into 1?).

6.5 Predictability and stability
As discussed in §2, our inference algorithm is designed to be
predictable and stable. When a user writes a program using
the provided type and then adds another sample (e.g. with
more missing values), they should not need to restructure
their program. For this reason, we keep the algorithm simple.
For example, we do not use probabilistic methods to assess
the similarity of record types, because a small change in the
sample could cause a large change in the provided types.

We leave a general theory of stability and predictability
of type providers to future work, but we formalize a brief
observation in this section. Say we write a program using a
provided type that is based on a collection of samples. When
a new sample is added, the program can be modified to run
as before with only small local changes.

For the purpose of this section, assume that the Foo cal-
culus also contains an exn value representing a runtime ex-
ception that propagates in the usual way, i.e. C[exn] exn,
and also a conversion function int that turns floating-point
number into an integer.

Remark 1 (Stability of inference). Assume we have a set of
samples d1, . . . , dn, a provided type based on the samples
τ1, e1, L1 = JS(d1, . . . , dn)K and some user code e written
using the provided type, such that L1;x : τ1 ` e : τ .

Next, we add a new sample dn+1 and consider a new
provided type τ2, e2, L2 = JS(d1, . . . , dn, dn+1)K.

Now there exists e′ such that L2;x : τ2 ` e′ : τ and if
for some d it is the case that e[x ← e1 d] v then also
e′[x← e2 d] v.

Such e′ is obtained by transforming sub-expressions of e
using one of the following translation rules:

(i) C[e] to C[match e with Some(v)→ v | None→ exn]

(ii) C[e] to C[e.M] where M = tagof(σ) for some σ
(iii) C[e] to C[int(e)]

Proof. For each case in the type provision (Figure 8) an
original shape σ may be replaced by a less preferred shape
σ′. The user code can always be transformed to use the
newly provided shape:

– Primitive shapes can become nullable (i), int can become
�oat (iii) or become a part of a labelled top type (ii).

– Record shape fields can change shape (recursively) and
record may become a part of a labelled top type (ii).

– For list and nullable shapes, the shape of the value may
change (we apply the transformations recursively).

– For the any shape, the original code will continue to work
(none of the labels is ever removed).

Intuitively, the first transformation is needed when the new
sample makes a type optional. This happens when it contains
a null value or a record that does not contain a field that all
previous samples have. The second transformation is needed
when a shape σ becomes any〈σ, . . .〉 and the third one is
needed when int becomes �oat.

This property also underlines a common way of handling
errors when using F# Data type providers. When a program
fails on some input, the input can be added as another sam-
ple. This makes some fields optional and the code can be
updated accordingly, using a variation of (i) that uses an ap-
propriate default value rather than throwing an exception.

7. Related and future work
The F# Data library connects two lines of research that
have been previously disconnected. The first is extending the
type systems of programming languages to accommodate
external data sources and the second is inferring types for
real-world data sources.

The type provider mechanism has been introduced in
F# [23, 24], added to Idris [3] and used in areas such as
semantic web [18]. The F# Data library has been developed
as part of the early F# type provider research, but previous
publications focused on the general mechanisms. This paper
is novel in that it shows the programming language theory
behind a concrete type providers.

Extending the type systems. Several systems integrate ex-
ternal data into a programming language. Those include
XML [9, 21] and databases [5]. In both of these, the system
requires the user to explicitly define the schema (using the
host language) or it has an ad-hoc extension that reads the
schema (e.g. from a database). LINQ [14] is more general,
but relies on code generation when importing the schema.

The work that is the most similar to F# Data is the data in-
tegration in Cω [13]. It extends C# language with types sim-
ilar to our structural types (including nullable types, choices
with subtyping and heterogeneous collections with multi-
plicities). However, Cω does not infer the types from sam-
ples and extends the type system of the host language (rather
than using a general purpose embedding mechanism).

In contrast, F# Data type providers do not require any
F# language extensions. The simplicity of the Foo calcu-
lus shows we have avoided placing strong requirements on
the host language. We provide nominal types based on the
shapes, rather than adding an advanced system of structural
types into the host language.

Advanced type systems and meta-programming. A num-
ber of other advanced type system features could be used
to tackle the problem discussed in this paper. The Ur [2]
language has a rich system for working with records; meta-
programming [6, 19] and multi-stage programming [25]
could be used to generate code for the provided types; and
gradual typing [20, 22] can add typing to existing dynamic
languages. As far as we are aware, none of these systems
have been used to provide the same level of integration with
XML, CSV and JSON.

Typing real-world data. Recent work [4] infers a succinct
type of large JSON datasets using MapReduce. It fuses simi-
lar types based on similarity. This is more sophisticated than
our technique, but it makes formal specification of safety
(Theorem 3) difficult. Extending our relative safety to prob-
abilistic safety is an interesting future direction.

The PADS project [7, 11] tackles a more general prob-
lem of handling any data format. The schema definitions
in PADS are similar to our shapes. The structure inference
for LearnPADS [8] infers the data format from a flat input
stream. A PADS type provider could follow many of the pat-
terns we explore in this paper, but formally specifying the
safety property would be more challenging.

8. Conclusions
We explored the F# Data type providers for XML, CSV and
JSON. As most real-world data does not come with an ex-
plicit schema, the library uses shape inference that deduces
a shape from a set of samples. Our inference algorithm is
based on a preferred shape relation. It prefers records to en-
compass the open world assumption and support developer
tooling. The inference algorithm is predictable, which is im-
portant as developers need to understand how changing the
samples affects the resulting types.

We explored the theory behind type providers. F# Data
is a prime example of type providers, but our work demon-
strates a more general point. The types generated by type
providers can depend on external input and so we can only
guarantee relative safety, which says that a program is safe
only if the actual inputs satisfy additional conditions.

Type providers have been described before, but this paper
is novel in that it explores the properties of type providers
that represent the “types from data” approach. Our experi-
ence suggests that this significantly broadens the applicabil-
ity of statically typed languages to real-world problems that
are often solved by error-prone weakly-typed techniques.

Acknowledgments
We thank to the F# Data contributors on GitHub and other
colleagues working on type providers, including Jomo Fisher,
Keith Battocchi and Kenji Takeda. We are grateful to anony-
mous reviewers of the paper for their valuable feedback and
to David Walker for shepherding of the paper.

References
[1] L. Cardelli and J. C. Mitchell. Operations on Records. In

Mathematical Foundations of Programming Semantics, pages
22–52. Springer, 1990.

[2] A. Chlipala. Ur: Statically-typed Metaprogramming with
Type-level Record Computation. In ACM SIGPLAN Notices,
volume 45, pages 122–133. ACM, 2010.

[3] D. R. Christiansen. Dependent Type Providers. In Proceed-
ings of Workshop on Generic Programming, WGP ’13, pages
25–34, 2013. ISBN 978-1-4503-2389-5.

[4] D. Colazzo, G. Ghelli, and C. Sartiani. Typing Massive JSON
Datasets. In International Workshop on Cross-model Lan-
guage Design and Implementation, XLDI ’12, 2012.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
Programming without Tiers. In Formal Methods for Compo-
nents and Objects, pages 266–296. Springer, 2007.

[6] J. Donham and N. Pouillard. Camlp4 and Template Haskell.
In Commercial Users of Functional Programming, 2010.

[7] K. Fisher and R. Gruber. PADS: A Domain-specific Language
for Processing Ad Hoc Data. ACM SIGPLAN Notices, 40(6):
295–304, 2005.

[8] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From Dirt
to Shovels: Fully Automatic Tool Generation from Ad Hoc
Data. In Proceedings of ACM Symposium on Principles of
Programming Languages, POPL ’08, pages 421–434, 2008.
ISBN 978-1-59593-689-9.

[9] H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML
Processing Language. Transactions on Internet Technology, 3
(2):117–148, 2003.

[10] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A
Minimal Core Calculus for Java and GJ. In ACM SIGPLAN
Notices, volume 34, pages 132–146. ACM, 1999.

[11] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez, and
A. Gleyzer. PADS/ML: A Functional Data Description Lan-
guage. In ACM SIGPLAN Notices, volume 42, pages 77–83.
ACM, 2007.

[12] H. Mehnert and D. Christiansen. Tool Demonstration: An
IDE for Programming and Proving in Idris. In Proceedings
of Vienna Summer of Logic, VSL’14, 2014.

[13] E. Meijer, W. Schulte, and G. Bierman. Unifying Tables, Ob-
jects, and Documents. In Workshop on Declarative Program-
ming in the Context of Object-Oriented Languages, pages
145–166, 2003.

[14] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In
Proceedings of the International Conference on Management
of Data, SIGMOD ’06, pages 706–706, 2006.

[15] R. Milner. The Definition of Standard ML: Revised. MIT
press, 1997.

[16] T. Petricek and D. Syme. In the Age of Web: Typed
Functional-first Programming Revisited. Post-Proceedings of
ML Workshop, 2015.

[17] D. Rémy. Type Inference for Records in a Natural Extension of
ML. Theoretical Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design. MIT Press, 1993.

[18] S. Scheglmann, R. Lämmel, M. Leinberger, S. Staab,
M. Thimm, and E. Viegas. IDE Integrated RDF Exploration,
Access and RDF–Based Code Typing with LITEQ. In The
Semantic Web: ESWC 2014 Satellite Events, pages 505–510.
Springer, 2014.

[19] T. Sheard and S. P. Jones. Template Meta-programming for
Haskell. In Proceedings of the ACM Workshop on Haskell,
pages 1–16. ACM, 2002.

[20] J. G. Siek and W. Taha. Gradual Typing for Functional Lan-
guages. In Scheme and Functional Programming Workshop,
pages 81–92, 2006.

[21] M. Sulzmann and K. Z. M. Lu. A Type-safe Embedding of
XDuce into ML. Electr. Notes in Theoretical Comp. Sci., 148
(2):239–264, 2006.

[22] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen,
P.-Y. Strub, and G. Bierman. Gradual Typing Embedded
Securely in JavaScript. In ACM SIGPLAN Notices, volume 49,
pages 425–437. ACM, 2014.

[23] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher,
J. Hu, T. Liu, B. McNamara, D. Quirk, M. Taveggia, W. Chae,
U. Matsveyeu, and T. Petricek. Strongly-typed Language
Support for Internet-scale Information Sources. Technical
Report MSR-TR-2012-101, Microsoft Research, September
2012.

[24] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Pet-
ricek. Themes in Information-rich Functional Programming
for Internet-scale Data Sources. In Proceedings of the Work-
shop on Data Driven Functional Programming, DDFP’13,
pages 1–4, 2013.

[25] W. Taha and T. Sheard. Multi-stage Programming with Ex-
plicit Annotations. ACM SIGPLAN Notices, 32(12):203–217,
1997. ISSN 0362-1340.

[26] A. K. Wright and M. Felleisen. A Syntactic Approach to
Type Soundness. Information and computation, 115(1):38–
94, 1994.

A. OpenWeatherMap service response
The introduction uses the JsonProvider to access weather
information using the OpenWeatherMap service. After reg-
istering, you can access the service using a URL http://api.
openweathermap.org/data/2.5/weather with query string
parameters q and APPID representing the city name and ap-
plication key. A sample response looks as follows:

{

"coord": {

"lon": 14.42,

"lat": 50.09
},

"weather": [

{

"id": 802,

"main": "Clouds",

"description": "scattered clouds",

"icon": "03d"

}

],

"base": "cmc stations",

"main": {

"temp": 5,

"pressure": 1010,

"humidity": 100,

"temp_min": 5,

"temp_max": 5

},

"wind": { "speed": 1.5, "deg": 150 },

"clouds": { "all": 32 },

"dt": 1460700000,

"sys": {

"type": 1,

"id": 5889,

"message": 0.0033,

"country": "CZ",

"sunrise": 1460693287,

"sunset": 1460743037

},

"id": 3067696,

"name": "Prague",

"cod": 200

}

Chapter 7

Data exploration through dot-driven development

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), PeterMüller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,21:1–21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

81

https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Data exploration through dot-driven development∗

Tomas Petricek1

1 The Alan Turing Institute, London, UK
and Microsoft Research, Cambridge, UK
tomas@tomasp.net

Abstract
Data literacy is becoming increasingly important in the modern world. While spreadsheets make
simple data analytics accessible to a large number of people, creating transparent scripts that
can be checked, modified, reproduced and formally analyzed requires expert programming skills.
In this paper, we describe the design of a data exploration language that makes the task more
accessible by embedding advanced programming concepts into a simple core language.

The core language uses type providers, but we employ them in a novel way – rather than
providing types with members for accessing data, we provide types with members that allow the
user to also compose rich and correct queries using just member access (“dot”). This way, we
recreate functionality that usually requires complex type systems (row polymorphism, type state
and dependent typing) in an extremely simple object-based language.

We formalize our approach using an object-based calculus and prove that programs construc-
ted using the provided types represent valid data transformations. We discuss a case study
developed using the language, together with additional editor tooling that bridges some of the
gaps between programming and spreadsheets. We believe that this work provides a pathway to-
wards democratizing data science – our use of type providers significantly reduce the complexity
of languages that one needs to understand in order to write scripts for exploring data.

1998 ACM Subject Classification D.3.2 Very high-level languages

Keywords and phrases Data science, type providers, pivot tables, aggregation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.55

1 Introduction

The rise of big data and open data initiatives means that there is an increasing amount of
raw data available. At the same time, the fact that “post-truth” was chosen as the word of
2016 [11] suggests that there has never been a greater need for increasing data literacy and
tools that let anyone explore such data and use it to make transparent factual claims.

Spreadsheets made data exploration accessible to a large number of people, but operations
performed on spreadsheets cannot be reproduced or replicated with different input parameters.
The manual mode of interaction is not repeatable and it breaks the link with the original
data source, making spreadsheets error-prone [17, 25]. One solution is to explore data
programmatically, as programs can be run repeatedly and their parameters can be modified.

However, even with the programming tools generally accepted as simple, exploring data is
surprisingly difficult. For example, consider the following Python program (using the pandas
library), which reads a list of all Olympic medals awarded (see Appendix A) and finds top 8
athletes by the number of gold medals they won in Rio 2016:

∗ This work was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1 and by
the Google Digital News Initiative.

© Tomas Petricek;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 55; pp. 55:1–55:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

55:2 Data exploration through dot-driven development

olympics = pd.read_csv("olympics.csv")
olympics[olympics["Games"] == "Rio (2016)"]

.groupby("Athlete")

.agg({"Gold" : sum})

.sort_values(by = "Gold", ascending = False)

.head(8)
The code is short and easy to understand, but writing or modifying it requires the user to
understand intricate details of Python and be well aware of the structure of the data source.
The short example specifies operation parameters in three different ways – indexing [. . .] is
used for filtering; aggregation takes a dictionary {. . .} and sorting uses optional parameters.
The dynamic nature of Python makes the code simple, but it also means that auto-completion
on member names (after typing dot) is not commonplace and so finding the operation names
(groupby, sort_values, head, ...) often requires using internet search. Furthermore, column
names are specified as strings and so the user often needs to refer back to the structure of
the data source and be careful to avoid typos.

The language presented in this paper reduces the number of language features by making
member access the primary programming mechanism. Finding top 8 athletes by the number
of gold medals from Rio 2016 can be written as:

olympics
.«filter data».«Games is».«Rio (2016)».then
.«group data».«by Athlete».«sum Gold».then
.«sort data».«by Gold descending».then
.«paging».take(8)

The language is object-based with nominal typing. This enables auto-completion that
provides a list of available members when writing and modifying code. The members (such
as «by Gold descending») are generated by the pivot type provider based on the knowledge of
the data source and transformations applied so far – only valid and meaningful operations
are offered. The rest of the paper gives a detailed analysis and description of the mechanism.

Contributions. This paper explores an interesting new area of the programming language
design space. We support our design by a detailed analysis (Section 3), formal treatment
(Section 6) and an implementation with a case study (Section 7). Our contributions are:

We use type providers in a new way (Section 2). Previous work focused on providing
members for direct data access. In contrast, our pivot type provider (Section 6) lazily
provides types with members that can be used for composing queries, making it possible
to perform entire date exploration through single programming mechanism (Section 3.2).
Our mechanism illustrates how to embed “fancy types” [37] into a simple nominally-typed
programming language (Section 4). We track names and types of available columns of
the manipulated data set (using a mechanism akin to row types), but our mechanism can
be used for embedding other advanced typing schemes into any Java-like language.
We formalize the language (Section 5) and the pivot type provider (Section 6) and
show that queries for exploring data constructed using the type provider are correct
(Section 6.2). Our formalization also covers the laziness of type providers, which is an
important aspect not covered in the existing literature.
We implement the language (github.com/the-gamma), make it available as a JavaScript
component (thegamma.net) that can be used to build transparent data-driven visualiza-
tions and discuss a case study visualizing facts about Olympic medalists (Section 7).

T. Petricek 55:3

2 Using type providers in a novel way

The work presented in this paper consists of a simple nominally-typed host language and
the pivot type provider, which generates types with members that can be used to construct
and execute queries against an external data source. This section briefly reviews the existing
work on type providers and explains what is new about the pivot type provider.

Information-rich programming. Type providers were first presented as a mechanism for
providing type-safe access to rich information sources. A type provider is a compile-time
component that imports external information source into a programming language [34].
It provides two things to the compiler or editor hosting it: a type signature that models
the external source using structures understood by the host language (e.g. types) and an
implementation for the signatures which accesses data from the external source.

For example, the World Bank type provider [27] provides a fine-grained access to develop-
ment indicators about countries. The following accesses CO2 emissions by country in 2010:

world.byYear.«2010».«Climate Change».«CO2 emissions (kt)»

The provided schema consists of types with members such as «CO2 emissions (kt)» and
«2010». The members are generated by the type provider based on the meta-data obtained
from the World Bank. The second part provided by the type provider is code that is executed
when the above code is run. For the example above, the code looks as follows:

series.create("CO2 emissions (kt)", "Year", "Value",
world.getByYear(2010, "EN.ATM.CO2E.KT"))

Here, a runtime library consists of a data series type (mapping from keys to values) and
the getByYear function that downloads data for a specified indicator represented by an ID.
The indicators exist only as strings in compiled code, but the type provider provides a
type-safe access to known indicators, increasing safety and making data access easier thanks
to auto-completion (which offers a list of available indicators).

Types from data. Recent work on the F# Data library [26] uses type providers for accessing
data in structured formats such as XML, CSV and JSON. This is done by inferring the
structure of the data from a sample document, provided as a static parameter to a type
provider. In the following example, adapted from [26], a sample URL is passed to JsonProvider:

type Weather = JsonProvider "http://api.owm.org/?q=London"
let ldn = Weather.GetSample()
printfn "The temperature in London is %f" ldn.Main.Temp

As in the World Bank example, the JSON type provider generates types with members
that let us access data in the external data source – here, we access the temperature using
ldn.Main.Temp. The provided code attempts to access the corresponding nested field and
converts it to a number. The relative safety property of the type provider guarantees that
this will not fail if the sample is representative of the actual data loaded at runtime.

Pivot type provider. The pivot type provider presented in this paper follows the same
general mechanism as the F# type providers discussed above, although it is embedded in a
simple host language that runs in a web browser.

ECOOP 2017

55:4 Data exploration through dot-driven development

The main difference between our work and the type providers discussed above is that
we do not use type providers for importing external data sources (by providing members
that correspond to parts of the data). Instead, we use type providers to lazily generate types
with members that let users compose type-safe queries over the data source.

This means that our use of type providers is more akin to meta-programming or code
generation with one important difference – the schema provided by the pivot type provider
is potentially infinite (as there are always more operations that can be applied). The
implementation relies on the fact that type providers are integrated into the type system
and types can be provided lazily. This is also a new aspect of our formalization in Section 5.

3 Simplifying data scripting languages

In Section 1, we contrasted a data exploration script written using the popular Python
library pandas [21] with a script written using the pivot type provider. In this section, we
analyze what makes the Python code complex (Section 3.1) and how our design simplifies it.

3.1 What makes data exploration scripts complex
We consider the Python example from Section 1 for concreteness, but the following four
points are shared with other commonly used libraries and languages. We use the four points
to inform our alternative design as discussed in the rest of this section.

The filtering operation is written using indexing [. . .] while all other operations are written
using member invocation with (optionally named) parameters. In the first case, we write
an expression olympics["Games"] == "Rio (2016)" returning a vector of Booleans while in
the other, we specify a column name using by = "Gold". In other languages, a parameter
can also be a lambda function specifying a predicate or a transformation.
The aggregation operation takes a dictionary {. . .}, which is yet another concept the user
needs to understand. Here, it lets us specify one or more aggregations to be applied over
a group. A similar way of specifying multiple operations or results is common in other
languages. For example, anonymous types in LINQ [22] play the same role.
The editor tooling available for Python is limited – editors that provide auto-completion
rely on a mix of advanced static analysis and simple (not always correct) hints and often
fail for chained operations such as the one in our example1. Statically-typed languages
provide better tooling, but at the cost of higher complexity2.
In the Python example (as well as in most other data manipulation libraries), column
names are specified as strings3. This makes static checking of column names and auto-
completion difficult. For example, "Gold" is a valid column name when calling sort_values,
but we only know that because it is a key of the dictionary passed to agg before.

In our design, we unify many distinct languages constructs by making member access the
primary operation (Section 3.2); we use simple nominal typing to enable auto-completion
(Section 3.3); we use operation-chaining via member access for constructing dictionaries
(Section 3.4) and we track column names statically in the pivot type provider (Section 4).

1 For an anecdotal evidence, see for example: stackoverflow.com/questions/25801246
2 A detailed evaluation is out of the scope of this paper, but the reader can compare the Python example
with F# code using Deedle (fslab.org/Deedle), Haskell Frames library (acowley.github.io/Frames)
and similar C# project (extremeoptimization.com/Documentation/Data_Frame)

3 This is the case for Deedle and the aforementioned C# library. Haskell Frames [9] tracks column names
statically, arguably at the cost of higher code complexity when compared with Python.

T. Petricek 55:5

Figure 1 Auto-completion offering the available values of the athlete name column

3.2 Unifying language constructs with member access
LISP is perhaps the best example of a language that unifies many distinct constructs using
a single form. In LISP, everything is an s-expression, that is, either a list or a symbol. In
contrast, a typical data processing language uses a number of distinct constructs including
indexers (for range selection and filtering), method calls (for transformations) and named
parameters (for further configuration). Consider filtering and sorting:

data[data["Games"] == "Rio (2016)"] Ê

data.filter(fun row→ row.Games = "Rio (2016)") Ë

data.sort_values(by = "Gold", ascending = False) Ì

Pandas uses indexers for filtering Ê which can alternatively be written (e.g. in LINQ) using
a method taking a predicate as a lambda function Ë. Operations that are parameterized only
by column name, such as sorting in pandas Ì are often methods with named parameters.

We aim to unify the above examples using a single language construct that offers a
high-level programming model and can be supported by modern tooling (as discussed in
Section 3.3). Member access provides an extremely simple programming construct that is,
in conjunction with the type provider mechanism, capable of expressing the above data
transformations in a uniform way:

data.«sort data».«by Gold descending».then Ê

data.«filter data».«Games is».«Rio (2016)».then Ë

The member names tend to be longer and descriptive. Quoted names appear as '. . .' in code,
but we typeset them using «...» for readability. The names are not usually typed by the
user (see Section 3.3) and so the length is not an issue when writing code. The above two
examples illustrate two interesting aspects of our approach.

Members, type providers, discoverability. When sorting Ê the member that specifies how
sorting is done includes the name of the column. This is possible because the pivot type
provider tracks the column names (see Section 4) and provides members based on the
available columns suitable for use as sort keys. When filtering Ë, the member «Rio (2016)»
is provided based on the values in the data source (we discuss this further in Section 6.3).

These two examples illustrate that member access can be expressive, but it requires huge
number of types with huge number of members. Type providers address this by integration
with the type system (formalized in Section 5) that discovers members lazily. This is why
approaches based on code generation or pre-processors would not be viable.

Using descriptive member names is only possible when the names are discoverable. The
above code could be executed in a dynamically-typed language that allows custom message-
not-understood handlers, but it would be impossible to get the name right when writing it.
Our approach relies on discovering names through auto-completion as discussed in Section 3.3.

ECOOP 2017

55:6 Data exploration through dot-driven development

«drop columns»
→ «drop Athlete»
→ «drop Discipline»
→ «drop Year»

«sort data»
→ «by Athlete»
→ «by Athlete descending»
→ «by Discipline»
→ «by Discipline descending»

«group data»
→ «by Athlete»
→ «average Year»
→ «sum Year»

→ «by Year»
→ «distinct Athlete»
→ «concat Athlete»
→ «distinct Discipline»
→ «concat Discipline»

Figure 2 Subset of members provided by the pivot type provider

Expressivity of members. Using member access as the primary mechanism for programming
reduces the expressivity of the language – our aim is to create a domain-specific language for
data exploration, rather than a general purpose language4. For this purpose, the sequential
nature of member accesses matches well with the sequential nature of data transformations.

The members provided, for example, for filtering limit the number of conditions that
can be written, because the user is restricted to choosing one of the provided members. As
illustrated by the case study based on our implementation (Section 7), this appears sufficient
for many common data exploration tasks. The mechanism could be made more expressive,
but we leave this for future work – for example, the type provider could accept or reject
member names written by the user (as in internet search) rather than providing names from
which the user can choose (as in web directories).

3.3 Tooling and dot-driven development
Source code editors for object-based languages with nominal type systems often provide
auto-completion for members of objects. This combination works extremely well in practice;
the member list is a complete list of what might follow after typing “dot” and it can be
easily obtained for an instance of known type. The fact that developers can often rely on just
typing “dot” and choosing an appropriate member led to a semi-serious phrase dot-driven
development, that we (equally semi-seriously) adopt in this paper.

Type providers in F# rely on dot-driven development when navigating through data.
When writing code to access current temperature ldn.Main.Temp in Section 2, the auto-
completion offers various available properties, such as Wind and Clouds once “dot” is typed
after ldn.Main. Other type providers [34] follow a similar pattern. It is worth noting that
despite the use of nominal typing, the names of types rarely explicitly appear in code – we
do not need to know the name of the type of ldn.Main, but we need to know its members.
Thus the type name can be arbitrary [26] and is used merely as a lookup key.

The pivot type provider presented in this paper uses dot-driven development for suggesting
transformations as well as possible values of parameters. This is illustrated in Figure 1 where
the user wants to obtain medals of a specific athlete and is offered a list of possible names.
The editor filters the list as the user starts typing the required name.

4 Designing a general purpose language based on member access is a separate interesting problem.

T. Petricek 55:7

Figure 2 lists a subset of the members from the example in Section 1. After choosing «sort
data», the user is offered the possible sorting keys. After choosing «group data», the user first
selects the grouping key and then can choose one or more aggregations that can be applied
on other columns of the group. Thus an entire data transformation (such as choosing top 8
athletes by the number of gold medals) can be constructed using dot-driven development.

Values vs. types. As Figure 1 illustrates, the pivot type provider sometimes blurs the
distinction between values and types. In the example in Section 1, "Rio (2016)" is a string
value in Python, but a statically-typed member «Rio (2016)» when using the pivot type
provider. This is a recurring theme in type provider development5.

Our language supports method calls and so some of the opertaions that are currently
exposed as member access could equally be provided as methods. For example, filtering
could be written as «Games is»("Rio (2016)"). However, the fact that we can offer possible
values when filtering largely simplifies writing of the script for the most common case when
the user is interested in one of the known values.

Unlike in traditional development, a data scientist doing data exploration often has the
entire data set available. The pivot type provider uses this when offering possible values
for filtering (Section 6.3), but all other operations (Section 6.1) require only meta-data
(names and types of columns). Following the example of type providers for structured data
formats [26], the schema could be inferred from a representative sample.

3.4 Expressing structured logic using members
In the motivating example, the agg method takes a dictionary that specifies one or more
aggregates to be calculated over a group. We sum the number of gold medals, but we
could also sum the number of silver and bronze medals, concatenate names of teams for the
athlete and perform other aggregations. In this case, we provide a nested structure (list of
aggregations) as a parameter of a single operation (grouping).

This is an interesting case, because when encoding program as a sequence of member
accesses, there is no built-in support for nesting. In the pivot type provider, we use the “then”
design pattern to provide operations that require nesting. The following example specifies
multiple aggregations and then sorts data by multiple keys:

olympics.
«group data».«by Athlete».
.«sum Gold».«sum Silver».«concat Team».then Ê

.«sort data».
.«by Gold descending».«and Silver descending».then Ë

When grouping, we sum the number of gold and silver medals and concatenates distinct team
names Ê. Then we sort the grouped data using two sorting keys Ë – first by the number of
gold medals and then silver medals (within a group with the same number of gold medals).

The “then” pattern. Nesting is an essential programming construct and it may be desirable
to support it directly in the language, but the “then” pattern lets us express nesting without
language support. In both of the cases above, the nested structure is specified by selecting
one or more members and then ending the nested structure using the then member.

5 The Individuals property in the Freebase type provider [34] imports values into types in a similar way.

ECOOP 2017

55:8 Data exploration through dot-driven development

In case of grouping, we choose aggregations («sum Gold», «concat Team», etc.) after we
specify grouping key using «by Athlete». In case of sorting, we specify the first key using «by
Gold descending» and then add more nested keys using «and Silver descending». Thanks to
the dot-driven development and the “then” pattern, the user is offered possible parameter
values (aggregations or sorting keys) even when creating a nested structure. We also use the
simple structure of the “then” pattern to automatically generate interactive user interfaces
for specifying aggregation and sorting parameters (Section 7).

Renaming columns. The pivot type provider automatically chooses names for the columns
obtained as the result of aggregation. In the above example Ê, the resulting data set will
have columns Athlete (the grouping key) together with Gold, Silver and Team (based on the
aggregated columns). The user cannot currently rename the columns.

In type providers for F#, renaming of columns could be encoded using methods with
static parameters [33] by writing, for example, g.«sum Gold as» "Total Gold" (). In F#, the
value of the static parameter (here, "Total Gold") is passed to the type provider, which can
use it to generate the type signature of the method and the return type with member name
according to the value of the static parameter.

4 Tracking column names

The last difficulty with data scripting discussed in Section 3.1 is that pandas (and most
other data exploration libraries, even for statically-typed languages) track column names as
strings at runtime, making code error-prone and auto-complete on column names difficult to
support. Proponents of static typing would correctly point out that column names and their
types can be tracked by a more sophisticated type system.

In this section, we discuss our approach – we track column names statically using a
mechanism that is inspired by row types and type state (Section 4.1), however we embed
the mechanism using type providers into a simple nominal type system (Section 4.2). This
way, the host language for the pivot type provider can be extremely simple – and indeed, the
mechanism could be added to languages such as Java or TypeScript with minimal effort.

4.1 Using row types and type state
There are several common data transformations that modify the structure of the data set and
affect what columns (and of what types) are available. When grouping and aggregating data,
the resulting data set has columns depending on the aggregates calculated. For simplicity,
we consider another operation – removing column from the data set. For example, given the
Olympic medals data set, we can drop Games and Year columns as follows:

olympics.«drop columns».«drop Games».«drop Year».then

Operations that change the type of rows in the data set can be captured using row types [35].
Row types make it possible to statically track operations on records that add or remove fields
and so they can be used for the typing of operations such as «drop Year». In addition, we
need to annotate type with a form of typestate [32] to restrict what operations are available.
When dropping columns, we first access the «drop columns» member, which sets the state to
a state where we can drop individual columns using «drop f». The then member can then be
used to complete the operation and choose another transformation.

T. Petricek 55:9

(drop-start)
Γ ` e : [f1 :τ1, . . . , fn :τn]

Γ ` e.«drop columns» : [f1 :τ1, . . . , fn :τn]drop

(drop-col)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«drop fi» : [f1 :τ1, . . . , fi−1 :τi−1, fi+1 :τi+1, . . . , fn :τn]drop

(drop-then)
Γ ` e : [f1 :τ1, . . . , fn :τn]drop

Γ ` e.«then» : [f1 :τ1, . . . , fn :τn]

Figure 3 Tracking available column names with row types and type state

To illustrate tracking of columns using row types and type state, consider a simple
language with variables (representing external data sources) and member access. Types can
be either primitive types α, types annotated with a type state lbl or row type with fields f :

e = v | e.N
τ = α | τlbl | [f1 :τ1, . . . , fn :τn]

Typing rules for members that are used to drop columns are shown in Figure 3. When
«drop columns» is invoked on a record, the type is annotated with a state drop (drop-start)
indicating that individual columns may be dropped. The then operation (drop-then) removes
the state label. Individual members can be removed using «drop fi» and the (drop-col) rule
ensures the dropped column is available in the input row type and removes it.

Other data transformations could be type checked in a similar way, but there are two
drawbacks. First, row types and typestate (although relatively straightforward) make the
host language more complex. Second, rules such as (drop-col) make auto-completion more
difficult, because the editor needs to understand the rules and calculate what members may
be invoked. This is a distinct operation from type checking and type inference (which operate
on complete programs) that needs to be formalized and implemented.

4.2 Using the pivot type provider
In our approach, the information about available fields is used by the pivot type provider to
provide types with appropriate members. This is hidden from the host language, which only
sees class types. Provided class definitions consist of a constructor and members:

l = type C(x : τ) = m

m = member N : τ = e

During type checking, the type system keeps track of a lookup of provided class definitions L.
Checking member access is then just a matter of finding the corresponding class definition
and finding the member type:

(member)
L; Γ ` e : C L(C) = type C(x : τ) = .. member Ni : τi = ei ..

L; Γ ` e.Ni : τi

The rule, adapted from [26], does not capture laziness of type providers that is important for
the pivot type provider (where the number of provided classes is potentially infinite). We
discuss this aspect in Section 5.

ECOOP 2017

55:10 Data exploration through dot-driven development

D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }
e = Πf1,...,fn

(e) Projection – select specified column names
| σϕ(e) Selection – filter rows by given predicate
| τf1 7→ω1,...,fn 7→ωn

(e) Sorting – sort by specified columns
| Φf,ρ1/f1,...,ρn/fn

(e) Grouping – group by and calculate aggregates

ω = desc | asc Sort order – descending or ascending
ρ = count Count number of rows in the group

| sum f Sum numerical values of the column f
| dist f Count number of distinct values of the column f
| conc f Concatenate string values of the column f

Figure 4 Relational algebra with values, sorting and aggregation

Using type providers and nominal type system hides knowledge about fields available in
the data set. However, for types constructed by the pivot type provider, we can define a
mapping fields that returns the fields available in the data set represented by the class. The
type provider encodes the logic expressed in Section 4.1 in the following sense:

I Remark 1 (Encoding of fancy types). If Γ ` e : [f1 : τ1, . . . , fn : τn] using a type system
defined in Figure 3 and Γ ` e : C using nominal typing and C is a type provided by the pivot
type provider then fields(C) = {f1 7→ τ1, . . . , fn 7→ τn}.
In the following two sections, we focus on formalizing the pivot type provider and the
nominally typed host language. We define the fields predicate in Section 6.2 and use it to
prove properties of the pivot type provider.

We do not fully develop the type system based on fancy types sketched in Section 4.1.
However, the remark illustrates one interesting aspect of our work – the type provider
mechanism makes it possible to express safety guarantees that would normally require row
types and typestate in a simple nominally typed language. In a similar way, type providers
have been used to encode session types [2], suggesting that this is a generally useful approach.

5 Formalising the host language and runtime

Type providers often provide a thin type-safe layer over richer untyped runtime components.
In case of providers for data access (Section 2), the untyped runtime component performs
lookups into external data sources. In case of the pivot type provider, the untyped runtime
component is a relational algebra modelling data transformations. We formalize the relational
algebra in Section 5.1, followed by the object-based host language in Section 5.2.

5.1 Relational algebra with vector semantics
The focus of our work is on data aggregation and so we use a form of relational algebra with
extensions for grouping and sorting [8, 24]. The syntax is defined in Figure 4. We write f for
column (field) names and we include definition of a data value D, which maps column names
to vectors of length r storing the data (values v are defined below). Aside from standard
projection Π and selection σ, our algebra includes sorting τ which takes one or more columns
forming the sort key (with sort order ω) and aggregation Φ, which requires a single grouping
key and several aggregations together with names of the new columns to be returned.

T. Petricek 55:11

Πfp(1),...,fp(m){f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }
{fp(1) 7→ vp(1),1, . . . , vp(1),r , . . . , fp(m) 7→ vp(m),1, . . . , vp(m),r }

σϕ{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }
{f1 7→ . . . , v1,j , . . . , . . . , fn 7→ . . . , vn,j , . . . } (∀j. ϕ {f1 7→ v1,j , . . . , fn 7→ vn,j})

τfp(1) 7→ω1,...,fp(m) 7→ωm{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }
{f1 7→ v1,q(1), . . . , v1,q(r) , . . . , fn 7→ vn,q(1), . . . , vn,q(r) } where q permutation
such that ∀i, j. i ≤ j =⇒ (u1,i, . . . , vm,i) ≤ (v1,j , . . . , vm,j) where
uk,l = vp(k),q(l) (when ωk = asc)
uk,l = −vp(k),q(l) (when ωk = desc)

Φfi,ρ1/f ′
1,...,ρm/f ′

m
{f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

{f ′1 7→ a1, . . . , f
′
m 7→ am, fi 7→ b} where

{g1, . . . , gs} = {{l | k ∈ 1 . . . r, vi,l = vi,k}, l ∈ 1 . . . r}
b = vi,k1 , . . . , vi,ks

where kj ∈ gj
ai = |g1|, . . . , |gs| when ρi = count
ai = Σk∈g1vj,k, . . . ,Σk∈gsvj,k when ρi = sum fj
ai = Πk∈g1vj,k, . . . ,Πk∈gs

vj,k when ρi = conc fj
ai = |{vj,k | k ∈ g1}|, . . . , |{vj,k | k ∈ gs}| when ρi = dist fj

Figure 5 Vector-based semantics for operations of the extended relational algebra

The semantics of the algebra is given in Figure 5. We use vector-based semantics to
support sorting and duplicate entries, but otherwise the formalization captures the usual
behaviour. In projection and sorting, we write fp(1), . . . , fp(m) to refer to a selection of fields
from f1, . . . , fn. Assuming m ≤ n, p can be seen as a mapping from {1 . . .m} to a subset of
{1 . . . n}. In selection, ϕ is a predicate applied to a mapping from column names to values. In
sorting, we assume that there is a permutation on row indices q such that the tuples obtained
by selecting values according to the given sort key are ordered. The auxiliary definition uk,l
negates the number to reverse the sort order when descending order is required.

The most complex operation is grouping. We need to group data by the value of the
column fi and then apply aggregations ρ1, . . . , ρm. To do this, we first obtain a set of groups
g1, . . . , gs where each group represents a set of indices of rows belonging to each group. For a
given group gi we can then obtain values of column j for rows in the group as {vj,k | k ∈ gi}.
This is used to calculate the resulting data set – the field fi becomes a new column formed by
the group keys (obtained by picking one of the indices from gj for each group); other fields
are calculated by aggregating data in various ways – |gi| gives the number of rows in the
group, Σ sums numerical values and Π (a slight notation abuse) concatenates string values.

5.2 Foo calculus with lazy context
We model the host language using a variant of the Foo calculus [26]. The core of the calculus
models a simple object-based language with objects and members. The syntax of the language
is shown in Figure 6. The relational algebra defined in Figure 4 is included in the Foo calculus
as a model of the runtime components of the pivot type provider – the values include the
data value D and the expressions include all the operations of the relational algebra.

The Foo calculus includes two special types. Query is a type of data and queries constructed

ECOOP 2017

55:12 Data exploration through dot-driven development

v = C(v) | series τ1, τ2 (v) | n | s | D
e = C(e) | series τ1, τ2 (e) | x | v | e.N | . . .
E = C(E) | series τ1, τ2 (E) | E.N

| Πf1,...,fn
(E) | σϕ(E) | τf1,...,fn

(E) | Φf,ρ1/f1,...,ρm/fm
(E)

τ = C | num | string | series τ1, τ2 | Query
l = type C(x : τ) = m

m = member N : τ = e

(member)
L(C) = (type C(x : τ) = . . . member Ni : τi = ei . . .), L′

(C(v)).Ni L ei[x← v]

(context)
e L e

′

E[e] L E[e′]

Figure 6 Syntax and remaining reduction rules of the Foo calculus

using the relational algebra. The type series τ1, τ2 models a type-safe data series mapping
keys of type τ1 to values of type τ2 that can be used, for example, as input for a charting
library. A series is a typed wrapper over a Query value and the proofs in Section 6.2 show that
a series obtained from the pivot type provider contains keys and values of matching types.

Reduction rules. The reduction relation L is parameterized by a function L that maps
class names to class definitions, together with nested classes associated with the class definition
(used during type checking as discussed below). The map is not used in the reduction rules
for the relational algebra, given in Figure 5 and so it was omitted there.

The remaining reduction rules are given in Figure 6. The (member) rule performs lookup
using L(C) to find the definition of the member that is being accessed and then it reduces
member access by substituting the evaluated constructor argument v for a variable x. We
assume standard capture-avoiding substitution [x← v]. The rule ignores the nested class
definitions L′. The (context) rule performs reduction in an evaluation context E.

Type checking. One interesting aspect of type checking with type providers is that type
providers can provide potentially infinite number of types. The types are provided lazily as
the type checker explores parts of the type space used by the program [34]. Consider:

olympics.«group data».«by Athlete».«sum Gold».then

The type checker initially knows the type of olympics is a class C1 with member «group data»
and it knows that the type of this member is C2. However, it only needs to obtain full
definition of C2 when checking the member «by Athlete». Types of other members of C1
remain unevaluated. This aspect of type providers have been omitted in previous work
[26, 19], but it is necessary for the pivot type provider. The typing rules given are written as:

L1; Γ ` e : τ ;L2

The judgement states that given class definitions L1 and a variable context Γ, the type of
expression e is τ and the type checking evaluated class definitions that are now included
in L2. The resulting context obtained by type checking contains all definitions that may be
needed when running the program and is passed to the reduction operation L.

T. Petricek 55:13

(num)
L; Γ ` n : num;L (string)

L; Γ ` s : string;L (var)
L; Γ, x : τ ` x : τ ;L

(data)
L; Γ ` vi,j : τ ;L τ ∈ {num, string}

L; Γ ` {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r } : Query;L

(proj)
L1; Γ ` e : Query;L2

L1; Γ ` Πf1,...,fn
(e) : Query;L2

(sort)
L1; Γ ` e : Query;L2

L1; Γ ` τf1,...,fn
(e) : Query;L2

(sel)
L1; Γ ` e : Query;L2

L1; Γ ` σϕ(e) : Query;L2
(group)

L1; Γ ` e : Query;L2
L1; Γ ` Φf,ρ1/f1,...,ρn/fn

(e) : Query;L2

(series)
L1; Γ ` e : Query;L2

L1; Γ ` series τ1, τ2 (e) : series τ1, τ2 ;L2

(new)
L1; Γ ` e : τ, L2 L2(C) = (type C(x : τ) = . . .), L

L1; Γ ` C(e) : C;L2 ∪ L

(member)

L1; Γ ` e : C;L2 L2 ∪ L; Γ, x : τ ` ei : τi;L3
L2(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L

L1; Γ ` e.Ni : τi;L3

Figure 7 Type-checking of Foo expressions with lazy context

The structure of class definitions L is a function mapping a class name C to a pair
consisting of the definition and a function that provides definitions of delayed classes:

L(C) = type C(x : τ) = m,L′

The class C may use classes defined in L, but also delayed classes from L′. This models
laziness as L′ is a function that may never be evaluated. Since L is potentially infinite, we
cannot check class definitions upfront as in typical object calculi [1]. Instead, we check that
that members are well typed as they appear in the source code, which matches the behaviour
of F# type providers. In general, this means that L may contain classes with incorrectly
typed members. We prove that this is not the case for the pivot type provider (Section 6.2).

The rules that define type checking are shown in Figure 7. The two rules that force the
discovery of new classes are (new) and (member). In (new), we find the class definition and
delayed classes using L2(C). We treat functions as sets and join L2 with delayed classes
defined by L using L2 ∪ L. In (member), we obtain the class definition and discover delayed
classes in the same way, but we also check that the body of the member is well-typed.

The rules for primitive types and variables are standard. Input data (data) is of type Query
and all the operations of relational algebra take Query input and produce Query results. An
untyped Query value can be converted into a series (series) of any type, akin to the boundary
between static and dynamic typing in gradually typed languages [31]. When provided by the
pivot type provider, the operation produces series with values of correct types.

ECOOP 2017

55:14 Data exploration through dot-driven development

pivot(F) = C, {C 7→ (l, L1 ∪ . . . ∪ L4)} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F)
member «sort data» : C2 = C2(x) where C2, L2 = sort(F)
member «group data» : C3 = C3(x) where C3, L3 = group(F)
member «get series» : C4 = C4(x) where C4, L4 = get-key(F)

get-key(F) = C, {C 7→ (l,
⋃
Lf)} Ë

l = type C(x : Query) = ∀f ∈ dom(F) where
member «with key f» : Cf = Cf (x) Cf , Lf = get-val(F, f)

get-val(F, fk) = C, {C 7→ (l, {})} Ì

l = type C(x : Query) = ∀f ∈ dom(F) \ {fk} where
member «and value f» : series τk, τv = τk = F (fk), τv = F (f)
series τk, τv (Πfk,f (x)) Í

Figure 8 Pivot type provider – entry-point type and accessing transformed data

6 Formalising the pivot type provider

A type provider is an executable component called by the compiler and the editor to provide
information about types on demand. In our formalization, we follow the style of Petricek
et al. [26], but we add laziness as discussed in Section 5.2. We model the core operations
(dropping columns, grouping and sorting) in Section 6.1 and refine the model to include
filtering Section 6.3. For simplicity we omit paging, which does not affect the shape of data.

6.1 Pivot type provider
A type provider is a function that takes static parameters, such as schema of the input data
set, and returns a class name C together with a mapping that defines the body of the class
and definitions of delayed classes L that may be used by the members of the class C. In our
case, the schema F is a mapping from field names to field types:

pivot(F) = C, {C 7→ (type C(x : Query) = . . . , L)} where F = {f1 7→ τ1, . . . , fn 7→ τn}

The class C provided by the pivot type provider has a constructor taking Query, which
represents the, possibly already partly transformed, input data set. It generates members
that allow the user to refine the query and access the data. The type provider is defined
using several helper functions discussed in the rest of this section.

Entry-point and data access. Figure 8 shows three of the functions defining the pivot type
provider. The pivot function Ê defines the entry-point type, which lets the user choose which
operation to perform before specifying parameters of the operation. This is the type of
olympics in the examples throughout this paper. The definition generates a new class C with
members that wrap the input data in delayed classes generated by other parts of the type
provider. The result of pivot is the class name C together with definition of the class and
delayed generated types. The definition is a function that only needs to be evaluated when

T. Petricek 55:15

drop(F) = C, {C 7→ (l, L′ ∪⋃
Lf)} Ê

l = type C(x : Query) = ∀f ∈ dom(F) where Cf , Lf = drop(F ′)
member «drop f» : Cf = Cf (Πdom(F ′)(x)) and F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
member then : C ′ = C ′(x) Ë where C ′, L′ = pivot(F)

sort(F) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f)} Ì

l = type C(x : Query) = ∀f ∈ {f | F (f) = num}, where
member «by f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, f 7→ desc)
member «by f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, f 7→ asc)

sort-and(F, s1, . . . , sn) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪ L′)} Í

l = type C(x : Query) = ∀f ∈ {f | F (f) = num, @i.si = f ′ 7→ ω ∧ f ′ = f}
member «f desc» : Cf = Cf (x) Cf , Lf = sort-and(F, s1, .., sn, f 7→ desc)
member «f asc» : C ′f = C ′f (x) C ′f , L

′
f = sort-and(F, s1, .., sn, f 7→ asc)

member then : C ′ = C ′(τs1,...,sn
(x)) where C ′, L′ = pivot(F) Î

Figure 9 Pivot type provider – dropping columns and sorting data

a program accesses a member of the class C, modelling the laziness of the type provider.
In the implementation, we return the name C together with a function that computes the
definition of the class when the type checker needs to inspect the body.

The get-key Ë and get-val Ì functions provide members that can be used to choose two
columns from the data set as keys and values and obtain the resulting data set as a value of
type series τ1, τ2 . For example, the following expression has a type series string, num :

olympics.«get series».«with key Athlete».«and value Year»

The get-key function generates a class with one member for each field in the data set. The
returned class Cf is generated by get-val and lets the user choose any of the remaining fields
as the value. The key and value columns are then selected using Πfk,f Í. The series is then
created with a data set containing only the key and value columns (we assume the order of
columns is preserved). Creating a series does not statically enforce that the data set has the
right structure, but the properties discussed in Section 6.2 show that series obtained from
the pivot type provider is constructed correctly.

Dropping columns and sorting. Functions that provide types for the «drop columns» and
«sort data» members are defined in Figure 9. The drop function Ê builds a new type that lets
the user drop any of the available columns. The resulting type Cf is recursively generated by
drop so that multiple columns can be dropped before completing the transformation using
the then operation Ë, whose return type is generated using the main pivot function. Note
that columns removed from the schema F ′ match the columns removed from the data set at
runtime using Πdom(F ′).

Types for defining the sorting transformation are split between two functions; sort Ì

generates type for choosing the first sorting key and sort-and Í lets the user add more keys.
For space reasons, we abbreviate ascending and descending as asc and desc in the generated
member names and we omit and in name of further keys such as «and Gold descending».

ECOOP 2017

55:16 Data exploration through dot-driven development

group(F) = C, {C 7→ (l,
⋃
Lf)} Ê

l = type C(x : Query) = ∀f ∈ dom(F) where
member «by f» : Cf = Cf (x) Cf , Lf = agg(F, f, {f 7→ F (f)}, ∅) Ë

agg(F, f,G, S) = C, {C 7→ (l,
⋃
Lf ∪

⋃
L′f ∪

⋃
L′′f ∪ L′ ∪ L′′)} Ì

l = type C(x : Query) = ∀f ∈ dom(F) \ dom(S)
member «sum f» : C ′f = C ′f (x) when F (f) = num Í

member «concat f» : C ′′f = C ′′f (x) when F (f) = string Î

member «count all» : C ′ = C ′(x) when Count /∈ G Ï

member «distinct f» : Cf = Cf (x)
member then : C ′′ = C ′′(Φf,ρ1/f1,...,ρn/fn

(x)) where {ρ1/f1, . . . , ρn/fn} = S Ð

where

Cf , Lf = agg(F, f,G ∪ {f 7→ num}, S ∪ {dist f/f})
C ′f , L

′
f = agg(F, f,G ∪ {f 7→ num}, S ∪ {sum f/f})

C ′′f , L
′′
f = agg(F, f,G ∪ {f 7→ string}, S ∪ {conc f/f})

C ′, L′ = agg(F, f,G ∪ {Count 7→ int}, S ∪ count/Count)
C ′′, L′′ = pivot(G)

Figure 10 Pivot type provider – grouping and aggregation

The members are restricted to numerical columns (by checking F (f) = num). The sort
keys are kept as a vector. The sort operation creates a singleton vector; sort-and appends a
new key to the end and the then member Î generates code that passes the collected sort keys
to the τ operation of the relational algebra. When generating members for adding further
sort keys, we exclude the columns that are used already (by checking that the column f does
not match column name of any of the existing keys @i. si = f ′ 7→ ω).

Grouping and aggregation. The final part of the pivot type provider is defined in Figure 10.
The group function Ê generates a class that lets the user select a column to use as the
grouping key and agg is used to provide aggregates that can be calculated over grouped
data. The agg function Ì takes the schema of the input data set F , column f to be used as
the group key, a schema of the data set that will be produced as the result G and a set of
aggregation operations collected so far S. Initially Ë, the resulting schema contains only the
column used as the key with its original type (which is always implicitly added by Φ) and
the set of aggregations to be calculated is empty.

The agg function is invoked recursively (similarly to drop and sort-and) to add further
aggregation operations, or until the user selects the then member Ð, which applies the
grouping using Φ and returns a class generated by the entry-point pivot function.

When calculating an aggregate over a specific column, the type provider reuses the column
name from the input data set in the resulting data set. Consequently, the agg function offers
aggregation operations only using columns that have not been already used. This somewhat
limits the expressivity, but it simplifies the programming model. Furthermore, «sum f» Í is
only provided for columns of type num and «concat f» Î is only provided for strings. Finally,
the «count all» aggregation Ï is not related to a specific field and is exposed once, adding a
column Count to the schema of the resulting data set.

T. Petricek 55:17

6.2 Properties of the pivot type provider
If we were using the relational algebra formalized in Section 5.1 to construct queries, we can
write an invalid program, e.g. by attempting to select a column f using Πf from a data set
that does not contain the column. This is not an issue when using the pivot type provider,
because the provided types allow the user to construct only correct data transformations.

To formalize this, we prove partial soundness of the Foo calculus (Theorem 1), which
characterizes the invalid programs that can be written using the Query-typed expressions
and then prove safety of the pivot type provider (Theorem 7), which shows that such errors
do not occur when using the provided types.

Foo calculus. The Foo calculus consists of the relational algebra and simple object calculus
where objects can be constructed and their members accessed. It permits recursion as a
member can invoke itself on a new object instance. To accommodate this, we formalize
soundness using progress (Lemma 2) and preservation (Lemma 3).

The soundness is partial because the evaluation can get stuck when an operation of the
relational algebra on a given data set is undefined.

I Theorem 1 (Partial soundness). For all L0, e, e
′, if L0, ∅ ` e : τ, L1 and e L1 e

′ then
either e′ is a value, or there exists e′′ such that e′ L1 e

′′, or e′ has one of the following
forms: E[Πf1,...,fn(D)], E[σϕ(D)], τf1,...,fn(D)] or E[Φf,ρ1/f1,...,ρm/fm

(D)] for some E,D.

Proof. Direct consequence of Lemma 2 and Lemma 3. J

I Lemma 2 (Partial progress). For all L0, e such that L0, ∅ ` e : τ, L1 then either, e is a
value, there exists e′ such that e L1 e

′ or e has one of the following forms: E[Πf1,...,fn(D)],
E[σϕ(D)], τf1,...,fn

(D)] or E[Φf,ρ1/f1,...,ρm/fm
(D)] for some E and D.

Proof. By induction over `. For data, strings and numbers, the expression is always a value.
For relational algebra operations, the expression can either be reduced or has one of the
required forms. For (member) typing guarantees reduction is possible. J

I Lemma 3 (Type preservation). For all L0, e, e
′ such that L0, ∅ ` e : τ, L1 and e L1 e

′

then L1, ∅ ` e′ : τ, L2 for some L2.

Proof. By induction over L1 . Cases for relational algebra operations and for (context) are
straightforward. The (member) case follows from a standard substitution lemma and the
fact that type checking of member access also type checks the body of the member. J

Correctness of the pivot provider. The pivot type provider defined by pivot defines an
entry-point class and a context L containing delayed classes. Our type system does not check
type definitions in L upfront (although this is possible in dependently-typed languages [7]),
but we prove that the body of all provided members is well-typed.

Type checking can also fail if a delayed class was not discovered before it is needed in
the (new) and (member) typing rules (Figure 7). We show that this cannot happen for
the context constructed by the pivot function. To avoid operating over potentially infinite
contexts, we first define an expansion operation ↓n L that evaluates the first n levels of the
nested context L and flattens it.

I Definition 4 (Expansion). Given a context L, we define nth expansion of L, written ↓n L
such that ↓n+1 L =↓n L ∪ ⋃

Ln where ↓n L = {C0 7→ (l0, L0), . . . , Cn 7→ (ln, Ln)} and
↓0 L = L.

ECOOP 2017

55:18 Data exploration through dot-driven development

I Theorem 5 (Correctness of lazy contexts). Given C,L = pivot(F) then for any e if there
exists i, τ such that ↓i L; ∅ ` e : τ ;L′ then also L; ∅ ` e : τ ;L′′.

Proof. Assume there exists F, e, i such that ↓i L; ∅ ` e : τ ;L′ but not L; ∅ ` e : τ ;L′′. This
is a contradiction as (new) and (member) typing rules expand L defined by pivot sufficiently
to discover all types that may have been used in the type-checking of e using ↓i L. J

I Theorem 6 (Correctness of provided types). For all F, n let C0, L0 = pivot(F) and assume
that C ∈ dom(↓n L) where ↓n L(C) = (type C(x : τ) = .. member Ni : τi = ei ..), L′. It holds
that for all i the body of Ni is well-typed, i.e. L ∪ L′;x : τ ` ei : τi;L′′.

Proof. By examination of the functions defining the type provider; the expressions ei are
well-typed and use only types defined in L ∪ L′. J

Safety of provided transformations. The two properties discussed above ensure that the
types provided by the pivot type provider can be used to type check expressions constructed
by the users of the type provider in the expected way. An expression will not fail to type
check because of an error in the provided types.

Now we can turn to the key theorem of the paper, which states that any expression
constructed using (just) the provided types can be evaluated to a value of correct type. For
simplicity, we only assume expressions that access a series using the «get series» member.
However, this covers all data transformations that can be constructed using the type provider.

I Theorem 7 (Safety of pivot type provider). Given a schema F = {f1 7→ τ1, . . . , fn 7→ τn},
let C,L = pivot(F) then for any expression e that does not contain relational algebra
operations or Query-typed values as sub-expression, if L;x : C ` e : series τ1, τ2 ;L′ then
for all D = {f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } such that ` vi,j : τi it holds
that e[x ← C(D)] ∗L′ series τk, τv ({fk 7→ k1, . . . , kr, fv 7→ v1, . . . , vr}) such that for all j
` kj : τk and ` vj : τv.

Proof. Define a mapping fields(C) that returns the fields expected in the data set passed to
a class C provided by the pivot type provider. Let fields(C) = F for C provided using:

pivot(F) = C,L get-key(F) = C,L

drop(F) = C,L get-val(F, fk) = C,L

sort(F) = C,L

sort-and(F, s1, . . . , sn) = C,L
group(F) = C,L agg(F, f,G, S) = C,L

By induction over L′ , show that when C(v).Ni is reduced using (member) then v is a value
{f1 7→ v1,1, . . . , v1,m , . . . , fn 7→ vn,1, . . . , vn,m } s.t. fields(C) = {f1 7→ τ1, . . . , fn 7→ τn}
and ` vi,j : τi. Thus the class provided by get-val is constructed with a data set containing
the required columns of corresponding types. J

6.3 Adding the filtering operation
The example given in Section 1 obtained top 8 athletes based on the number of gold medals
from Rio 2016. It used two operations that were omitted in the formalization in Section 6.1.
We omitted paging to keep the host language simple, but we also omitted filtering, which lets
us write «filter data».«Games is».«Rio (2016)». This operation is worth further discussion.
To support it, the type provider needs not only the schema of the data set, but also sample
data set that is used to offer the available values such as «Rio (2016)».

T. Petricek 55:19

pivot(F,D) = C, {C 7→ (l, L1 ∪ L2 ∪ . . .} Ê

l = type C(x : Query) =
member «drop columns» : C1 = C1(x) where C1, L1 = drop(F,D)
member «filter data» : C2 = C2(x) where C2, L2 = filter(F,D)
(. . .)

drop(F,D) = C, {C 7→ (l, L′ ∪⋃
Lf)} Ë

l = type C(x : Query) = ∀f ∈ dom(F)
member «drop f» : Cf = where F ′ = {f ′ 7→ τ ′ ∈ F, f ′ 6= f}
Cf (Πdom(F ′)(x)) and Cf , Lf = drop(F ′,Πdom(F ′)(D)) Ì

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter(F,D) = C, {C 7→ (l, L′ ∪⋃
Lf)}

l = type C(x : Query) = ∀f ∈ dom(F)
member «f is» : Cf = Cf (x) where Cf , Lf = filter-val(F, f,D) Í

member then : C ′ = C ′(x) where C ′, L′ = pivot(F,D)

filter-val(F, f,D) = C, {C 7→ (l,∪⋃
Lv)} where D = {f 7→ v1, . . . , vn , . . .} Î

l = type C(x : Query) = ∀v ∈ {v1, . . . , vn}
member « v » : Cv = where Cv, Lv = filter(F, σϕv (D))
Cv(σϕv

(x)) and ϕv(r) = r(f) = v Ï

Figure 11 Pivot type provider – grouping and aggregation

In the revised formalization, the pivot function which models the type provider takes the
schema F together with sample data D and provides the type with class context:

pivot(F,D) = C,L where
F = {f1 7→ τ1, . . . , fn 7→ τn}
D = {f1 7→ v1,1, . . . , v1,r , . . . , fn 7→ vn,1, . . . , vn,r }

In prior work [26], the input value is not available when writing the code and so the schema
is inferred from a representative sample. In exploratory data analysis, the data set is often
available at the time of writing the code and so D can be the actual data set.

The Figure 11 shows a revised version of the pivot function Ê together with one of the
operations discussed before and the newly added filter function. As members members
performing data transformations are generated, the provider applies the same transformation
on the sample data. For example, the revised drop function Ë takes the sample data set D;
when calling drop recursively to generate nested class after dropping a column Ì, it removes
the column from the schema (as before), but it also removes the column from the sample
dataset. This means that as nested types are provided, the sample data used is always
representative of data what will be passed to the class at runtime.

After choosing the «filter data» member, the class provided by filter lets the user select
one of the columns Í based on the schema; filter-val then generates a class with members
based on the available values for the specified column in the data D Î. The predicate that
filters data based on the value Ï is used both in the runtime code and when restricting the
sample data set using σϕv

(D) in the type provider when recursively calling filter.

ECOOP 2017

55:20 Data exploration through dot-driven development

olympics.«filter data».«Medal is».Gold.«Team is»
→ «Czech Republic».«Athlete is»
→ «Barbora Spotakova»
→ «David Kostelecky»
→ «David Svoboda»

→ Mongolia.«Athlete is»
→ «Badar-Uugan Enkhbat»
→ «Tuvshinbayar Naidan»

Figure 12 Subset of members provided by the filtering operation

The fact that we transform the sample data when providing types is important for two
reasons. It makes it possible to apply filtering after aggregation (which changes the format of
data) and it means that more appropriate values are provided for faceted data. For example,
Figure 12 shows some of the provided members when filtering data by medal, team and
individual athlete. Once we refine the team using «Team is».Mongolia and attempt to filter
by athlete using «Athlete is», the type provider offers only the names of Mongolian athletes.

7 Case study: Visualizing Olympic medalists

We used The Gamma script with the pivot type provider to build an interactive web site
(rio2016.thegamma.net) that visualizes a number of facts about Olympic medalists using
the data set discussed in Appendix A and used throughout this paper. The web site lets
the readers view and modify the source code and we also developed a number of tools that
make working with the source code easier, going beyond the basic auto-completion tooling
to enable dot-driven development as discussed in Section 3.3. In this section, we review our
experience and outline some of the additional tools (available at github.com/the-gamma).

Building tables and charts. As part of the case study, we implement functions for building
basic visualizations (table, column chart, pie chart and timeline) and we extended the host
language with more advanced features that can be used to customize the displays. Building
rich visualizations with the simplicity of the pivot type provider is an interesting future work.
Figure 13 shows a sample table, listing top athletes over the entire history of Olympic games.

Figure 13 Athletes by the number of medals over the entire history of Olympic games

T. Petricek 55:21

Figure 14 User interface with automatically provided grouping and sorting options

The data transformation used to construct the table include the operations discussed in
this paper together with paging functionality and «get the data» which returns the entire
data set of type Query, as opposed to extracting a series with keys and values:

let data = olympics
.«group data».«by Athlete»
.«sum Gold».«sum Silver».«sum Bronze».«concat Team».then

.«sort data».«by Gold descending»
.«and by Silver descending».«and by Bronze descending».then

.paging.take(10).«get the data»
table.create(data)

The table.create operation on the last line generates a table based on the columns available
in the data set. We omit the additional customization which specifies that medals should be
rendered as images. For most visualizations we built, the pivot type provider was expressive
enough to capture the core logic of the operation, but further joining of data was sometimes
needed. Possible extensions that would allow capturing those are discussed in Section 8.1.

Generating interactive user interfaces. Although the pivot type provider simplifies code
needed for data exploration, not everyone will be able to write or modify source code. The
simplicity of the host language makes it possible to automatically generate user interface
that allows changing of some of the parameters of the program. Figure 14 shows an example
for the above code snippet that we implemented as part of the visualization.

The user interface lets the user choose aggregations to be calculated over a group and
select columns used for sorting. It is generated automatically by looking for a specific pattern
in the chain of member accesses – we annotate members with annotations denoting whether
a member is start of a list, list item or an end of a list. The editor then looks for parts of the
chain of the form «list start».«list item 1».«list item 2».«list end» and generates a component
that lets the user remove or add list items. An item cannot be removed if the operation
would break the code (e.g. when it adds a member that is needed later) and items to be
added are chosen using available members (as in the standard auto-complete). The headers
shown in Figure 14 are provided as additional annotations attached to «list start».

ECOOP 2017

55:22 Data exploration through dot-driven development

Figure 15 Spreadsheet-inspired live editor for the pivot type provider

Spreadsheet-inspired live editor. The third editor extension that we developed for the pivot
type provider aims to bridge the gap between code and user interfaces. This is done through
a direct manipulation editor [28] inspired by spreadsheet applications. When exploring data
in a spreadsheet, the user can always see the data they work with and the results of an action
will be immediately visible. This is not usually the case when writing code in text editor.
However, when exploring data using the pivot type provider, the intermediate results can be
calculated immediately using the sample data set provided when instantiating the refined
version of the type provider with filtering support (Section 6.3).

The Figure 15 shows the sample expression (discussed above) in the live editor6. Note
that the selected part of code is the «by Gold descending» identifier and so the preview shows
results as computed at that point of the query evaluation. Athletes with largest number of
gold medals appear first, but silver or bronze medals are not yet used as secondary sorting
keys and so the secondary ordering is arbitrary. As the user moves through the code, or
writes the code, the live preview is updated accordingly.

Finally, the editor also makes it possible to modify the code through the user interface.
The “x” buttons can be used to remove sort keys or transformations and “+” buttons (on the
right) can be used to add more transformations or to specify additional parameters within
the “then” pattern. In case of sorting, this allows adding further sorting keys.

Unlike the user interface for modifying lists, the live editor works specifically with the
pivot type provider. However, it still relies on the simple structure provided by the fact that
entire transformation can be written as a single chain of member accesses. In particular,
we identify individual transformations («group by», «sort by», etc.) and generate different
user interface for specifying parameters of each transformation. For sorting, as shown in
Figure 15, the user can add or remove sort keys. For grouping or paging, the user interface
lets the user choose the grouping key and the number of elements to take, respectively.

6 The live editor can be tested live as part of the documentation for the JavaScript package at thegamma.net

T. Petricek 55:23

8 Related and further work

The technical focus of this paper is on the programming language theory behind the pivot
type provider (Section 6), but the paper also outlines interesting human-computer interaction
aspects (Section 7). We discuss further related directions in this section before concluding.

8.1 Further work
The pivot type provider shows the feasibility of using dot-driven development as a mechanism
behind simple programming tools for data exploration. Extending the mechanism to handle
large and dirty datasets poses a number of interesting challenges.

Scalability. A benefit of our approach based on relational algebra, is that the query construc-
ted by the pivot type provider can be translated to SQL and executed by a database engine.
This means that evaluating the query over large data sets does not pose a problem. However,
the completion lists generated from data when filtering may require further consideration.

We plan to explore a number of possibilities such as grouping the values by a prefix (e.g.
«starting with LO».London and «starting with CA».Cambridge) or grouping the values by their
frequency (for example, «occurring less than 100 times».Grantchester and «occurring more than
10000 times».London). Such encoding makes it possible to scale to an arbitrary data size,
provided that the backing data storage is equipped with an appropriate index.

Expressivity. The case studies presented in the paper show that the pivot type provider
is practically useful in its current form, but we acknowledge that its expressivity is limited
to simple queries. Making the tool more expressive to allow tasks such as denormalisation,
handling of missing values and dirty data is an important problem. Unlike data querying
(which is captured by the relational algebra), there is no generally accepted “algebra of data
cleaning” and so more foundational work is needed, possibly building on from tools such as
Wrangler [16] and PADS [12]. We believe that the “dot-driven development” methodology
can support richer languages and we intend to explore this direction in the future.

8.2 Related work
Our work builds on type providers, which have been pioneered in F# [34]. The technical
contributions are related to several works on type systems. This section also gives an overview
of related work on human-computer interaction and commercial tools for data visualization.

Type providers. Type providers first appeared in F# [34] and can also be seen as a form of
dependent typing [7]; we take the opposite perspective and use type providers as a mechanism
for implementing other type system features. Our focus on using type providers for describing
computations is different from other type provider work [26, 19, 27], which focuses on mapping
of external data into types. To our best knowledge, the Azure type provider [3] is the first
type provider that provides members for specifying a restricted form of queries.

Fancy types. The pivot type provider makes data exploration safer as it does not allow
construction of invalid queries. Alternative approach would be to use fancy types, such
as those available in Haskell [9, 37]. The approach sketched in Section 4.1 used row types
and typestate or phantom types [35, 32, 18]. The idea of using type providers to encode
fancy types has also been explored for session types [13, 2] and it would be interesting to see
whether our approach can be applied in other areas such as web development [6].

ECOOP 2017

55:24 Data exploration through dot-driven development

Human-computer interaction. We discussed how the pivot type provider simplifies the
programming model (Section 3), but it would be interesting to explore this aspect empirically
through the perspective of HCI. The live editor shown in Section 7 offers a form of direct
manipulation [28, 29, 30]. Unlike spreadsheets, we construct a transformation rather than
actually transforming data, which makes it more related to systems for query construction
[20, 5]. Our approach is somewhat different in that we see code as equally important to the
direct manipulation interface.

Relational algebra. Our operational semantics used to model data transformations (Sec-
tion 5) was based on relational algebra [8, 24], although our focus was on aggregation, which
has been added to the core algebra in a number of different ways [23, 14, 4, 10]. The pivot
type provider does not provide operations for joining data sets, which is an interesting
problem for further work as it requires extensions to the type provider mechanism – the join
operation is parameterized by two data sets that are being combined.

Commercial tools. There is a wide range of commercial tools for building dashboards
and data visualizations such as Microsoft Power BI [36], Tableau [38] and Qlik [15]. Those
allow users to build data visualizations through a user interface and embedded scripting
capabilities. The main difference from the pivot type provider is that none of these tools
treats source code as primary and so they do not provide the same level of reproducibility as
scripts written using the pivot type provider.

9 Conclusions

In this paper, we presented a simple programming language for data exploration. The
language addresses two problems with the current tooling for data science. On one hand,
spreadsheets are easy to use, but are error-prone and do not lead to reproducible scripts
that could be modified or checked for correctness. On the other hand, even simple data
exploration libraries require the user to understand non-trivial programming concepts and
offer only little help when writing data exploration code.

We reduce the number of concepts in the language by making member access (“dot”)
the primary programming mechanism and we implement type provider for data exploration,
which offers available transformations and their parameters as members of a provided type.
This leads to a simple language that can be well supported by standard tooling such as
auto-completion. We also explore other possibilities for tooling enabled by this model ranging
from simple interactive user interfaces to direct manipulation tools.

The pivot type provider offers a safe and easy to use layer over an underlying relational
algebra that we use to model data transformations. As a key technical contribution of this
paper, we formalize the type provider and prove that queries constructed using the types it
provides are correct. Achieving this property by other means would require a language with
complex type system features such as typestate and row types.

We believe that the simple programming model for data exploration presented in this
paper can contribute to democratization of data exploration – you should not need to be an
experienced programmer to build a transparent visualization using facts that matter to you!

Acknowledgements. The author is grateful to Don Syme for numerous discussions about
type providers, James Geddes and Kenji Takeda for suggestions and useful references and to
Mariana Marasoiu and Alan Blackwell for ideas on human-computer interaction aspects of
the work. Finally, thanks to the anonymous reviewers for useful suggestions and corrections.

T. Petricek 55:25

References
1 Martin Abadi and Luca Cardelli. A theory of objects. Springer Science & Business, 2012.
2 Fahd Abdeljallal. Session types with Fahd Abdeljallal. F#unctional Londoners meetup

group, 2016. URL: https://skillsmatter.com/meetups/8459.
3 Isaac Abraham. Azure storage type provider. Available online., 2016. URL: http://

fsprojects.github.io/AzureStorageTypeProvider/.
4 Rakesh Agrawal. Alpha: An extension of relational algebra to express a class of recursive

queries. IEEE Transactions on Software Engineering, 14(7):879–885, 1988.
5 Eirik Bakke and David R. Karger. Expressive query construction through direct manipula-

tion of nested relational results. In Proceedings of International Conference on Management
of Data, SIGMOD ’16, pages 1377–1392. ACM, 2016. doi:10.1145/2882903.2915210.

6 Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record computation.
SIGPLAN Not., 45(6):122–133, June 2010. doi:10.1145/1809028.1806612.

7 David Raymond Christiansen. Dependent type providers. In Proceedings of Workshop
on Generic Programming, WGP ’13, pages 25–34. ACM, 2013. doi:10.1145/2502488.
2502495.

8 E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970. doi:10.1145/362384.362685.

9 Anthony Cowley. Frames: Data frames for tabular data. Available on GitHub, 2017. URL:
https://github.com/acowley/Frames.

10 Richard Cyganiak. A relational algebra for sparql. Digital Media Systems Laboratory HP
Laboratories Bristol. HPL-2005-170, page 35, 2005.

11 Oxford Dictionaries. Word of the year 2016 is... Oxford University Press, 2016. URL:
https://en.oxforddictionaries.com/word-of-the-year/word-of-the-year-2016.

12 Kathleen Fisher and Robert Gruber. Pads: a domain-specific language for processing ad
hoc data. In ACM Sigplan Notices, volume 40, pages 295–304. ACM, 2005.

13 Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
European Symposium on Programming, pages 74–90. Springer, 1999.

14 Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-total. In Proceedings of
International Conference on Data Engineering, ICDE ’96, pages 152–159. IEEE Computer
Society, 1996.

15 Christopher Ilacqua, Henric Cronstrom, and James Richardson. Learning Qlik Sense®:
The Official Guide. Packt Publishing Ltd, 2015.

16 Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Interactive
visual specification of data transformation scripts. In ACM Human Factors in Computing
Systems (CHI), 2011. URL: http://vis.stanford.edu/papers/wrangler.

17 Paul Krugman. The Excel depression. New York Times, 18, 2013.
18 Daan Leijen and Erik Meijer. Domain specific embedded compilers. SIGPLAN Not.,

35(1):109–122, December 1999. doi:10.1145/331963.331977.
19 Martin Leinberger, Stefan Scheglmann, Ralf Lämmel, Steffen Staab, Matthias Thimm,

and Evelyne Viegas. Semantic web application development with LITEQ. In International
Semantic Web Conference, pages 212–227. Springer, 2014.

20 Bin Liu and H. V. Jagadish. A spreadsheet algebra for a direct data manipulation query
interface. In Proceedings of International Conference on Data Engineering, ICDE ’09, pages
417–428. IEEE Computer Society, 2009. doi:10.1109/ICDE.2009.34.

21 Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython. O’Reilly Media, Inc., 2012.

ECOOP 2017

55:26 Data exploration through dot-driven development

22 Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling object, relations and
XML in the .net framework. In Proceedings of the International Conference on Management
of Data, pages 706–706. ACM, 2006.

23 Z. Meral Özsoyoglu and Gultekin Özsoyoglu. An extension of relational algebra for summary
tables. In Proceedings of International Workshop on Statistical Database Management,
SSDBM’83, pages 202–211. Lawrence Berkeley Laboratory, 1983.

24 M. Tamer Ozsu. Principles of Distributed Database Systems. Prentice Hall Press, 3rd
edition, 2007.

25 Raymond R Panko. What we know about spreadsheet errors. Journal of Organizational
and End User Computing (JOEUC), 10(2):15–21, 1998.

26 Tomas Petricek, Gustavo Guerra, and Don Syme. Types from data: Making structured
data first-class citizens in F#. In Proceedings of Conference on Programming Language
Design and Implementation, PLDI ’16, pages 477–490. ACM, 2016. doi:10.1145/2908080.
2908115.

27 Tomas Petricek, Don Syme, and Zach Bray. In the age of web: Typed functional-first
programming revisited. In Proceedings ML Family/OCaml Users and Developers workshops,
ML ’15. ACM, 2015.

28 Ben Shneiderman. The future of interactive systems and the emergence of direct manipu-
lation. In Proceedings of the NYU Symposium on User Interfaces on Human Factors and
Interactive Computer Systems, pages 1–28. Ablex Publishing Corp., 1984.

29 Ben Shneiderman. Direct manipulation for comprehensible, predictable and controllable
user interfaces. In Proceedings of International Conference on Intelligent User Interfaces,
pages 33–39. ACM, 1997.

30 Ben Shneiderman, Christopher Williamson, and Christopher Ahlberg. Dynamic queries:
database searching by direct manipulation. In Proceedings of Conference on Human Factors
in Computing Systems, pages 669–670. ACM, 1992.

31 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

32 Robert E Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Eng., (1):157–171, 1986.

33 Don Syme. F# 4.0 speclet - extending the F# type provider mechanism
to allow methods to have static parameters. F# Language Design Proposal,
2016. URL: https://github.com/fsharp/fslang-design/blob/master/FSharp-4.0/
StaticMethodArgumentsDesignAndSpec.md.

34 Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. Themes
in information-rich functional programming for internet-scale data sources. In Proceedings
of Workshop on Data Driven Functional Programming, DDFP ’13, pages 1–4. ACM, 2013.
doi:10.1145/2429376.2429378.

35 Mitchell Wand. Type inference for record concatenation and multiple inheritance. Inf.
Comput., 93(1):1–15, July 1991. doi:10.1016/0890-5401(91)90050-C.

36 Christopher Webb et al. Power Query for Power BI and Excel. Apress, 2014.
37 Stephanie Weirich. Depending on types. SIGPLAN Not., 49(9):241–241, August 2014.

doi:10.1145/2692915.2631168.
38 Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. An analytic data engine for

visualization in tableau. In Proceedings of International Conference on Management of
Data, pages 1185–1194. ACM, 2011.

T. Petricek 55:27

A Sample of the Olympic medals data set
The data set used as an example in the case study discussed in Section 7 as well as
in the examples discussed throughout the paper is a single CSV file listing the entire
history of Olympic medals awarded since 1896. The data set can be found at https:
//github.com/the-gamma/workyard together with scripts used to obtain it. The following
is a representative example listing the first 5 rows:

Games,Year,Discipline,Athlete,Team,Gender,Event,Medal,Gold,Silver,Bronze
Athens (1896), 1896, Swimming, Alfred Hajos, HUN, Men, 100m freestyle, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Otto Herschmann, AUT, Men, 100m freestyle, Silver, 0, 1, 0
Athens (1896), 1896, Swimming, Dimitrios Drivas, GRE, Men, 100m freestyle for sailors, Bronze, 0, 0, 1
Athens (1896), 1896, Swimming, Ioannis Malokinis, GRE, Men, 100m freestyle for sailors, Gold, 1, 0, 0
Athens (1896), 1896, Swimming, Spiridon Chasapis, GRE, Men, 100m freestyle for sailors, Silver, 0, 1, 0

The column names are the same as the column names used to generate the olympics value
using the pivot type provider. The script to generate the file de-normalizes the Medal column
and adds Gold, Silver and Bronze columns which are numerical and can thus be easily summed.
When loading the data, we also transform country codes such as GRE to full country names.

ECOOP 2017

Part III

Publications: Data infrastructure

109

Chapter 8

Foundations of a live data exploration environment

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

110

https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Foundations of a live data exploration environment

Tomas Petriceka,b
a University of Kent, UK
b and The Alan Turing Institute, UK

Abstract A growing amount of code is written to explore and analyze data, often by data analysts who do not
have a traditional background in programming, for example by journalists. The way such data anlysts write
code is different from the way software engineers do so. They use few abstractions, work interactively and rely
heavily on external libraries. We aim to capture this way of working and build a programming environment
that makes data exploration easier by providing instant live feedback.

We combine theoretical and applied approach. We present the data exploration calculus, a formal language
that captures the structure of code written by data analysts. We then implement a data exploration environ-
ment that evaluates code instantly during editing and shows previews of the results. We formally describe
an algorithm for providing instant previews for the data exploration calculus that allows the user to modify
code in an unrestricted way in a text editor. Supporting interactive editing is tricky as any edit can change
the structure of code and fully recomputing the output would be too expensive. We prove that our algorithm
is correct and that it reuses previous results when updating previews after a number of common code edit
operations. We also illustrate the practicality of our approach with an empirical evaluation and a case study.

As data analysis becomes an ever more important use of programming, research on programming lan-
guages and tools needs to consider new kinds of programming workflows appropriate for those domains and
conceive new kinds of tools that can support them. The present paper is one step in this important direction.

ACM CCS 2012
Human-centered computing → Interactive systems and tools;
Information systems → Data mining;
Software and its engineering → Compilers;

Keywords Data exploration, live programming, data journalism, instant previews

The Art, Science, and Engineering of Programming

Submitted September 30, 2019

Published February 17, 2020

doi 10.22152/programming-journal.org/2020/4/8
© Tomas Petricek
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 4, no. 3, 2020, article 8; 31 pages.

Foundations of a live data exploration environment

1 Introduction

One of the aspects that make spreadsheets easier to use than other programming tools
is their liveness. When you change a cell in Excel, the whole spreadsheet updates
instantly and you immediately see new results, without having to explicitly trigger
re-computation and without having to wait for an extensive period of time.
An increasing number of programming environments aim to provide a live develop-

ment experience for standard programming languages, but doing this is not easy. Fully
recomputing the whole program after every keystroke is inefficient and calculating
how a change in the source code changes the result is extremely hard when the text
editor allows arbitrary changes. Consider the following snippet that gets the release
years of the 10 most expensive movies from a data set movies:

let top=movies.sortBy(λx → x .getBudget())
.take(10).map(λx → x .getReleased().format("yyyy"))

A live programming environment computes and displays the list of years. Suppose
that the programmer then makes 10 a variable and changes the date format:

let count= 10
let top=movies.sortBy(λx → x .getBudget())

.take(count).map(λx → x .getReleased().format("dd-mm-yyyy"))

Ideally, the live programming environment should understand the change, reuse a
cached result of the first two transformations (sorting and taking the first 10 elements)
and only evaluate the map operation to differently format the release dates of top
10 movies. Our environment does this for a simple data exploration language in an
unrestricted text editor. We discuss related work in section 7, but we briefly review
the most important directions here, in order to situate our contributions.

Contributions

We present the design and implementation of a live programming environment for a
simple data exploration language that provides correct and efficient instant feedback,
yet is integrated into an ordinary text editor. Our key contributions are:

We introduce the data exploration calculus (section 3), a small formally tractable
language for data exploration. The calculus is motivated by our review of how data
analysts work (section 2) and makes it possible to write simple, transparent and
reproducible data analyses.
A live programming environment does not operate in batch mode and so we cannot
follow classic compiler literature. We capture the essence of such new perspective
(section 4) and use it to build our instant preview mechanism (section 5) that
evaluates code instantly during editing.
We prove that our instant preview mechanism is correct (section 6.1) and that it
reuses previously evaluated values when possible (section 6.2). We illustrate the
practicality of the mechanism using an empirical evaluation (section 6.3) and a
case study (section 6.4).

8:2

Tomas Petricek

Figure 1 Financial Times analysis that joins UN trade database with ISO country codes.

2 Understanding how data scientists work

Data scientists often use general-purpose programming languages such as Python, but
the kind of code they write and the way they interact with the system is very different
from how software engineers work [21]. This paper focuses on simple data wrangling
and data exploration as done, for example, by journalists analysing government
datasets. This new kind of non-expert programmers is worth our attention as they
often work on informing the public. They need easy-to-use tools, but not necessarily a
full programming langugae. In this section, we ilustrate how such data analyses look
and we provide a justification for the design of our data exploration calculus.

2.1 Simple data exploration in Jupyter

Data analysts increasingly use notebook systems such as Jupyter, which make it
possible to combine text, equations and code with results of running the code, such
as tables or visualizations. Notebooks blur the conventional distinction between

8:3

Foundations of a live data exploration environment

development and execution. Data analysts write small snippets of code, run them to
see results immediately and then revise them.
Notebooks are used by users ranging from scientists who implement complex models

of physical systems to journalists who perform simple data aggregations and create
visualizations. Our focus is on the simplest use cases. Making programmatic data
exploration more spreadsheet-like should encourage users to choose programming
tools over spreadsheets, resulting in more reproducible and transparent data analyses.
Consider the Financial Times analysis of plastic waste [7, 25]. It joins datasets from

Eurostat, UN Comtrade and more, aggregates the data and builds a visualization
comparing waste flows in 2017 and 2018. Figure 1 shows an excerpt from one notebook
of the data analysis. The code has a number of important properties:

There is no abstraction. The analysis uses lambda functions as arguments to library
calls, but it does not define any custom functions. Code is parameterized by having
a global variable material set to "plastics" and keeping other possible values in a
comment. This lets the analyst run and check results of intermediate steps.
The code relies on external libraries. Our example uses Pandas [36], which provides
operations for data wrangling such as merge to join datasets or drop_duplicates to
delete rows with duplicate column values. Such standard libraries are external to
the data analysis and are often implemented in another language like C++.
The code is structured as a sequence of commands. Some commands define a
variable, either by loading data, or by transforming data loaded previously. Even in
Python, data is often treated as immutable. Other commands produce an output
that is displayed in the notebook.
There are many corner cases, such as the fact that keep_default_na needs to be set
to handle Namibia correctly. These are discovered interactively by running the code
and examining the output, so providing an instant feedback is essential.

Many Jupyter notebooks are more complex than the above example and might use
helper functions or object-oriented code. However, simple data analyses such as the one
discussed here are frequent enough and pose interesting problems for programming
tools. This paper aims to bring such analyses to the attention of programming research
community by capturing their essential properties as a formal calculus.

2.2 Dot-driven data exploration in The Gamma

Simple data exploration has been the motivation for a scripting language The
Gamma [45]. Scripts in The Gamma are sequences of commands that either define
a variable or produce an output. It does not support top-level functions and lambda
functions can be used only as method arguments. Given the limited expressiveness of
The Gamma, libraries are implemented in other languages, such as JavaScript. The
Gamma uses type providers [54] for accessing external data sources. Type providers
generate object types with members and The Gamma offers those in an auto-complete
list when the user types dot (‘.’) to access a member. The combination of type providers
and auto-complete makes it possible to solve a large number of data exploration tasks
through the very simple interaction of selecting operations from a list.

8:4

Tomas Petricek

(a) The analysis counts the number of distinct events per ath-
lete. After typing ‘.’ the editor offers further aggregation
operations.

(b) Our live programming environment for The Gamma. The
table is updated on-the-fly and shows the result at the
current cursor position.

Figure 2 Previous work on The Gamma with auto-complete based on type information
(left) and our new editor with instant preview (right).

The example in figure 2a summarizes data on Olympic medals. Identifiers such
as 'sum Bronze' are names of members generated by the type provider. The type
provider used in this example generates an object with members for data transforma-
tions such as 'group data', which return further objects with members for specifying
transformation parameters, such as selecting the grouping key using 'by Athlete'.
The Gamma language is richer, but the example in figure 2a shows that non-trivial

data exploration can be done using a very simple language. The assumptions about
structure of code that are explicit in The Gamma are implicitly present in Python and
R data analyses produced by journalists, economists and other users with other than
programming background. When we refer to The Gamma in this paper, readers not
familiar with it can consider a small subset of Python.

2.3 Live programming for data exploration

The implementation that accompanies this paper builds a live programming environ-
ment for The Gamma. It is discussed in section 6.4 and it replaces the original text
editor with just auto-complete with a live programming environment that provides
instant previews.
An example of a instant preview is shown in figure 2b. As noted earlier, The Gamma

programs consist of lists of commands which are either expressions or let bindings. Our
editor displays a instant preview below the command that the user is currently editing.
The preview shows the result of evaluating the expression or the value assigned to a
bound variable. When the user changes the code, the preview is updated automatically,
without any additional interaction with the user.

8:5

Foundations of a live data exploration environment

Programs, commands, terms, expressions and values

p ::= c1; . . . ; cn

c ::= let x = t | t
t ::= o | x
| t.m(e, . . . , e)

e ::= t | λx → e
v ::= o | λx → e

Evaluation contexts of expressions

Ce[−] = Ce[−].m(e1, . . . , en) | o.m(v1, . . . , vm, Ce[−], e1, . . . , en) | −
Cc[−] = let x = Ce[−] | Ce[−]
Cp[−] = o1; . . . ; ok; Cc[−]; c1; . . . ; cn

Let elimination and member reduction

o1; . . . ; ok; let x = o; c1; . . . ; cn
o1; . . . ; ok; o; c1[x ← o]; . . . ; cn[x ← o]

(let)

o.m(v1, . . . , vn) ε o′

Cp[o.m(v1, . . . , vn)] Cp[o′]
(external)

Figure 3 Syntax, contexts and reduction rules of the data exploration calculus

There are a number of guiding principles that inform our design. First, we allow
the analyst to edit code in an unrestricted form in a text editor. Although structured
editors provide an appealing alternative and make recomputation easier, we prefer
the flexibility of plain text. Second, we focus on the scenario when code changes, but
input does not. Rapid feedback allows the analyst to quickly adapt code to correctly
handle corner cases that typical analysis involves. In contrast to work on incremental
computation, we do not consider the case when data changes, although supporting
interactive data exploration of streaming data is an interesting future direction.

3 Data exploration calculus

The data exploration calculus is a small formal language for data exploration. The
calculus is not, in itself, Turing-complete and it can only be used together with
external libraries that define what objects are available and what the behaviour of
their members is. This is sufficient to capture the simple data analyses discussed in
section 2. We define the calculus in this section and then use it to formalise our instant
preview mechanism in section 4. The instant preview mechanism does not rely on
types and so we postpone the discussion of static typing to appendix C. Interestingly,
it reuses the mechanism used for live previews.

8:6

Tomas Petricek

3.1 Language syntax

The calculus combines object-oriented features such as member access with functional
features including lambda functions. The syntax is defined in figure 3. Object values
o are defined by external libraries that are used in conjunction with the core calculus.
A program p in the data exploration calculus consists of a sequence of commands c.

A command can be either a let binding or a term. Let bindings define variables x
that can be used in subsequent commands. Lambda functions can only appear as
arguments in method calls. A term t can be a value, variable or a member access,
while an expression e, which can appear as an argument in member access, can be a
lambda function or a term.

3.2 Operational semantics

The data exploration calculus is a call-by-value language. We model evaluation as a
small-step reduction . Fully evaluating a program results in an irreducible sequence
of objects o1; . . . ; on (one object for each command, including let bindings) which can
be displayed as intermediate results of the data analysis. The operational semantics is
parameterized by a relation ε that models the functionality of the external libraries
used with the calculus and defines the reduction behaviour for member accesses. The
relation has the following form:

o1.m(v1, . . . , vn) ε o2

Here, the operation m is invoked on an object and takes values (objects or function
values) as arguments. The reduction always results in an object. Figure 3 defines
the reduction rules in terms of ε and evaluation contexts; Ce specifies left-to-right
evaluation of arguments of a method call, Cc specifies evaluation of a command and
Cp defines left-to-right evaluation of a program. The rule (external) calls a method
provided by an external library in a call-by-value fashion; (let) substitutes a value of
an evaluated variable in all subsequent commands and leaves the result in the list of
commands. Note that our semantics does not define how λ applications are reduced.
This is done by external libraries, which will typically supply functions with arguments
using standard β-reduction. The behaviour is subject to constraints discussed next.

3.3 Example external library

The data exploration calculus is not limited to the data exploration domain. It can
be used with external libraries for a wide range of other simple programming tasks,
such as image manipulation, as done in section 6.3. However, we choose a name that
reflects the domain that motivated this paper. To illustrate how a definition of an
external library looks, consider the following simple data manipulation script:

let l = list.range(0,10)
l.map(λx →math.mul(x , 10))

An external library provides the list and math values with members range, map and
mul. The objects of the external library consist of numbers n, lists of objects [o1, . . . , ok]

8:7

Foundations of a live data exploration environment

and failed computations ⊥ [37]. Next, the external library needs to define the ε
relation that defines the evaluation of member accesses. The following shows the
rules for members of lists, assuming the only supported member is map:

e[x ← ni] oi (for all i ∈ 1 . . . k)

[n1, . . . , nk].map(λx → e) ε [o1, . . . , ok]

(otherwise)
[n1, . . . , nk].m(v1, . . . , vn) ε ⊥

When evaluating map, we apply the provided function to all elements of the list using
standard β-reduction, defined recursively using , and return a list with resulting
objects. The ε relation is defined on all member accesses, but non-existent members
reduce to the failed computation ⊥.

3.4 Properties

The data exploration calculus has a number of desirable properties. Some of those
require that the relation ε, which defines evaluation for external libraries, satisfies
a number of conditions. We discuss normalization and let elimination in this section.
Those two are particularly important as they will allow us to prove correctness of our
method of evaluating instant previews in section 6.1.

Definition 1 (Further reductions). We define two additional reduction relations:
We write ∗ for the reflexive, transitive closure of
We write let for a call-by-name let binding elimination c1; . . . ; ck−1;
let x = t; ck+1; . . . ; cn let c1; . . . ; ck−1; t; ck+1[x ← t]; . . . ; cn[x ← t]

We say that two expressions e and e′ are observationally equivalent if, for any
context C , the expressions C[e] and C[e′] reduce to the same value. Lambda functions
λx→ 2 and λx→ 1+1 are not equal, but they are observationally equivalent. We
require that external libraries satisfy two conditions. First, when a method is called
with observationally equivalent values as arguments, it should return the same value.
Second, the evaluation of o.m(v1, . . . , vn) should be defined for all o, n and vi. The
definition in section 3.3 satisfies those by using standard β-reduction for lambda
functions and by reducing all invalid calls to the ⊥ object.

Definition 2 (External library). An external library consists of a set of objects O and
a reduction relation ε that satisfies the following two properties:
Totality For all o, m, i and all v1, . . . , vi, there exists o′ such that o.m(v1, . . . , vi) ε o′.
Compositionality For observationally equivalent arguments, the reduction should al-

ways return the same object, i.e. given e0, e1, . . . , en and e′0, e′1, . . . , e′n and m such that
e0.m(e1, . . . , en) ∗ o and e′0.m(e′1, . . . , e′n) ∗ o′ then if for any contexts C0, C1, . . . , Cn

it holds that if Ci[ei] ∗ oi and Ci[e′i] ∗ oi for some oi then o = o′.

Compositionality is essential for proving the correctness of our instant preview
mechanism and implies determinism of external libraries. Totality allows us to prove
normalization, i.e. all programs reduce to a value – although the resulting value may
be an error value provided by the external library.

8:8

Tomas Petricek

Theorem 1 (Normalization). For all p, there exists n, o1, . . . , on such that p ∗ o1; . . . ; on.

Proof. A program that is not a sequence of values can be reduced and reduction
decreases the size of the program. See appendix A.1 for more detail.

Although the reduction rules (let) and (external) of the data exploration calculus
define an evaluation in a call-by-value order, eliminating let bindings in a call-by-name
way using the let reduction does not affect the result. This simplifies our later proof
of instant preview correctness in section 6.1.

Lemma 2 (Let elimination for a program). Given any program p such that p ∗
o1; . . . ; on for some n and o1, . . . , on then if p let p′ for some p′ then also p′ ∗ o1; . . . ; on.

Proof. By constructing p′ ∗ o1; . . . ; on from p ∗ o1; . . . ; on. See appendix A.2.

4 Formalising a live programming environment

A naive way of providing instant previews during code editing would be to re-evaluate
the code after each change. This would be wasteful – when writing code to explore
data, most changes are additive. To update a preview, we only need to evaluate newly
added code. We describe an efficient mechanism in this section.

4.1 Maintaining the dependency graph

The key idea behind our method is to maintain a dependency graph [32] with nodes
representing individual operations of the computation that can be evaluated to obtain
a preview. Each time the program text is modified, we parse it afresh (using an error-
recovering parser) and bind the abstract syntax tree to the dependency graph. When
binding a new expression to the graph, we reuse previously created nodes as long as
they have the same structure and the same dependencies. For expressions that have a
new structure, we create new nodes.
The nodes of the graph serve as unique keys into a lookup table containing previously

evaluated parts of the program. When a preview is requested for an expression, we
use the graph node bound to the expression to find a preview. If a preview has not
been evaluated, we force the evaluation of all dependencies in the graph and then
evaluate the operation represented by the current node.

4.1.1 Elements of the graph
The nodes of the graph represent individual operations of the computation. In our
design, the nodes are used as cache keys, so we attach a unique symbol s to some
of the nodes. That way, we can create two unique nodes representing, for example,
access to a member named take which differ in their dependencies.

8:9

Foundations of a live data exploration environment

val(10) val(15)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s1)
arg(0)oo

arg(1)

OO

var(data)

(a) Graph constructed from initial expression:
let x = 15 in data.skip(10).take(x)

val(10)

mem(skip, s0)

arg(0)
��

arg(1)

OO

mem(take, s2)
arg(0)oo

arg(1)
kk

var(data)

(b) Updated graph after changing x to 10:
let x = 10 in data.skip(10).take(x)

Figure 4 Dependency graphs formed by two steps of the live programming process.

The graph edges are labelled with labels indicating the kind of dependency. For a
method call, the labels are “first argument”, “second argument” and so on. Writing s
for symbols and i for integers, nodes (vertices) v and edge labels l are defined as:

v = val(o) | var(x) | mem(m, s) | fun(x , s) (Vertices)
l = body | arg(i) (Edge labels)

The val node represents a primitive value and contains the object itself. Two occur-
rences of 10 in the source code will be represented by the same node. Member access
mem contains the member name, together with a unique symbol s – two member ac-
cess nodes with different dependencies will contain a different symbol. Dependencies
of member access are labelled with arg indicating the index of the argument (0 for the
instance and 1, . . . for the arguments). Finally, nodes fun and var represent function
values and variables bound by λ abstraction.

4.1.2 Example graph
figure 4 illustrates how we build the dependency graph. Node representing take(x)
depends on the argument – the number 15 – and the instance, which is a node
representing skip(10). This depends on the instance data and the number 10. Note
that variables bound via let binding such as x do not appear as var nodes. The node
using it depends directly on the node representing the expression assigned to x .
After changing the value of x , we create a new graph. The dependencies of the

node mem(skip, s0) are unchanged and so the symbol s0 attached to the node remains
the same and previously computed previews can be reused. This part of the program
is not recomputed. The arg(1) dependency of the take call changed and so we create
a new node mem(skip, s2) with a fresh symbol s2. The preview for this node is then
computed as needed using the already known values of its dependencies.

4.1.3 Reusing graph nodes
The binding process takes an expression and constructs a dependency graph. It uses a
lookup table to reuse previously created member access and function value nodes. The
key in the lookup table is formed by a node kind together with a list of dependencies.

8:10

Tomas Petricek

bind-exprΓ ,∆(e0.m(e1, . . . , en)) = v, ({v} ∪ V0 ∪ . . .∪ Vn, E ∪ E0 ∪ . . .∪ En) (1)
when vi , (Vi , Ei) = bind-exprΓ ,∆(ei) and v =∆(mem(m), [(v0,arg(0)), . . . , (vn,arg(n))])
let E = {(v, v0,arg(0)), . . . , (v, vn,arg(n))}

bind-exprΓ ,∆(e0.m(e1, . . . , en)) = v, ({v} ∪ V0 ∪ . . .∪ Vn, E ∪ E0 ∪ . . .∪ En) (2)
when vi , (Vi , Ei) = bind-exprΓ ,∆(ei) and ∆(mem(m), [(v0,arg(0)), . . . , (vn,arg(n))])↓
let v =mem(m, s), s fresh and E = {(v, v0,arg(0)), . . . , (v, vn,arg(n))}

bind-exprΓ ,∆(λx → e) = v, ({v} ∪ V, {e} ∪ E) (3)
when Γ1 = Γ ∪ {x ,var(x)} and v0, (V, E) = bind-exprΓ1,∆(e) and v =∆(fun(x), [(v0,body)])
let e = (v, v0,body)

bind-exprΓ ,∆(λx → e) = v, ({v} ∪ V, {e} ∪ E) (4)
when Γ1 = Γ ∪ {x ,var(x)} and v0, (V, E) = bind-exprΓ1,∆(e) and ∆(fun(x), [(v0,body)])↓
let v = fun(x , s), s fresh and e = (v, v0,body)

bind-exprΓ ,∆(o) = val(o), ({val(o)},;) (5)
bind-exprΓ ,∆(x) = v, ({v},;) when v = Γ (x) (6)

Figure 5 Binding rules that define a construction of a dependency graph for an expression.

A node kind includes the member or variable name; a lookup table ∆ then maps a
node kind with a list of dependencies to a cached node:

k ::= fun(x) | mem(m) (Node kinds)
∆(k, [(v1, l1), . . . , (vn, ln)]) (Lookup for a node)

The example on the second line looks for a node of a kind k that has dependencies
v1, . . . , vn labelled with labels l1, . . . , ln. We write ∆(k, l)↓ when a value for a key is
not defined. When creating the graph in figure 4b, we perform the following lookups:

∆(mem(skip), [(var(data),arg(0)), (val(10),arg(1))]) (1)
∆(mem(take), [(mem(skip, s0),arg(0)), (val(10),arg(1))]) (2)

First, we look for the skip member access. The result is the mem(skip, s0) known from
the previous step. We then look for the take member access. In the earlier step, the
argument of take was 15 rather than 10 and so this lookup fails. We then construct a
new node mem(take, s2) and later add it to the cache.

4.2 Binding expressions to a graph

After parsing modified code, we update the dependency graph and link each node
of the abstract syntax tree to a node of the dependency graph. This process is called
binding and is defined by the bind-expr function (figure 5) and bind-prog function
(figure 6). Both functions are annotated with a lookup table∆ and a variable context Γ .

8:11

Foundations of a live data exploration environment

bind-progΓ ,∆(let x = e; c2; . . . ; cn) = v1; . . . ; vn, ({v1} ∪ V ∪ V1, E ∪ E1) (7)
let v1, (V1, E1) = bind-exprΓ ,∆(e1) and Γ1 = Γ ∪ {(x , v1)}
and v2; . . . ; vn, (V, E) = bind-progΓ1,∆(c2; . . . ; cn)

bind-progΓ ,∆(e; c2; . . . ; cn) = v1; . . . ; vn, ({v1} ∪ V ∪ V1, E ∪ E1) (8)
let v1, (V1, E1) = bind-exprΓ ,∆(e) and v2; . . . ; vn, (V, E) = bind-progΓ1,∆(c2; . . . ; cn)

bind-progΓ ,∆([]) = [], (;,;) (9)

Figure 6 Binding rules that define a construction of a dependency graph for a program.

updateV,E(∆i−1) =∆i such that:
∆i(mem(m), [(v0,arg(0)), . . . , (vn,arg(n))]) =mem(m, s)
when mem(m, s) ∈ V and (mem(m, s), vi ,arg(i)) ∈ E for i ∈ 0, .., n

∆i(fun(x), [(v1,body)]) = fun(x , s)
when fun(x , s) ∈ V and (fun(x , s), v1,body) ∈ E

∆i(v) =∆i−1(v) (otherwise)

Figure 7 Updating the node cache after binding a new graph

The variable context is a map from variable names to dependency graph nodes and is
used for variables bound using let binding.
When invoked, bind-exprΓ ,∆(e) returns a node v that corresponds to the expression e,

paired with a dependency graph (V, E) formed by nodes V and labelled edges E. That
edges are written as (v1, v2, l) and include a label l. The bind-progΓ ,∆ function works
similarly, but turns a sequence of commands into a sequence of nodes.
When binding a member access, we use bind-expr recursively to get a node and a

dependency graph for each sub-expression. The nodes representing sub-expressions
are then used for lookup into∆, together with their labels. If a node already exists in∆
it is reused (1). Alternatively, we create a new node containing a fresh symbol (2). The
graph node bound to a function depends on a synthetic node var(x) that represents a
variable of unknown value. When binding a function, we create a variable node and
add it to the variable context Γ1 before binding the body. As with member access, the
node representing a function may (3) or may not (4) already exist in the lookup table.
When binding a program, we bind the first command and recursively process

remaining commands (9). For let binding (7), we bind the expression e assigned to
the variable to obtain a graph node v1. We then store the node in the variable context
Γ1 and bind the remaining commands. The variable context is used when binding a
variable in bind-expr (6) and so all variables declared using let will be bound to a
graph node representing the value assigned to the variable. When the command is
just an expression (8), we bind the expression using bind-expr.

8:12

Tomas Petricek

4.3 Edit and rebind loop

During editing, the dependency graph is repeatedly updated according to the binding
rules. Wemaintain a series of lookup table states∆0,∆1,∆2, . . . The initial lookup table
is empty, i.e. ∆0 = ;. At a step i, we parse a program pi and obtain a new dependency
graph using the previous ∆. The result is a sequence of nodes corresponding to
commands of the program and a graph (V, E):

v1; . . . ; vn, (V, E) = bind-prog;,∆i−1
(pi)

The new state of the cache is computed using updateV,E(∆i−1) defined in figure 7. The
function adds newly created nodes from the graph (V, E) to the previous cache ∆i−1

and returns a new cache ∆i.

5 Computing instant previews

The binding process constructs a dependency graph after code changes. The nodes
in the dependency graph correspond to individual operations that will be performed
when running the program. When evaluating a preview, we attach partial results
to nodes of the graph. Since the binding process reuses nodes, previews for sub-
expressions attached to graph nodes will also be reused.
In this section, we describe how previews are evaluated. The evaluation is done

over the dependency graph, rather than over the structure of program expressions as
in the operational semantics given in section 3.2. In section 6, we prove that resulting
previews are the same as the result we would get by directly evaluating code and we
also show that no recomputation occurs when code is edited in certain ways.

5.1 Previews and delayed previews

Programs in the data exploration calculus consist of sequence of commands. Those
are evaluated to a value with a preview that can be displayed to the user. However,
we also support previews for sub-expressions. This can be problematic if the current
sub-expression is inside the body of a function. For example:

let top=movies.take(10).map(λx → x .getReleased().format("dd-mm-yyyy"))

Here, we can directly evaluate sub-expressions movies and movies.take(10), but not
x .getReleased() because it contains a free variable x . Our preview evaluation algorithm
addresses this by producing two kinds of previews. A fully evaluated preview is just a
value, while a delayed preview is a partially evaluated expression with free variables:

p = o | λx → e (Fully evaluated previews)
d = p | ¹eºΓ (Evaluated and delayed previews)

A fully evaluated preview p can be either a primitive object or a function value with
no free variables. A possibly delayed preview d can be either an evaluated preview p

8:13

Foundations of a live data exploration environment

(lift-expr)
v ⇓ ¹eºΓ

v ⇓lift ¹eºΓ

(lift-prev)
v ⇓ p

v ⇓lift ¹pº;
(val)

val(o) ⇓ o

(var)
var(x) ⇓ ¹xºx

(fun-val)
(fun(x , s), v,body) ∈ E v ⇓ p

fun(x , s) ⇓ λx → p

(fun-bind)
(fun(x , s), v,body) ∈ E v ⇓ ¹eºx

fun(x , s) ⇓ λx → e

(fun-expr)
(fun(x , s), v,body) ∈ E v ⇓ ¹eºx ,Γ

fun(x , s) ⇓ ¹λx → eºΓ

(mem-val)
∀i ∈ {0 . . . k}.(mem(m, s), vi ,arg(i)) ∈ E vi ⇓ pi p0.m(p1, . . . , pk) ε p

mem(m, s) ⇓ p

(mem-expr)
∀i ∈ {0 . . . k}.(mem(m, s), vi ,arg(i)) ∈ E ∃ j ∈ {0 . . . k}.v j�⇓ p j vi ⇓lift ¹eiºΓi

mem(m, s) ⇓ ¹e0.m(e1, . . . , ek)ºΓ0,...,Γ k

Figure 8 Rules that define evaluation of previews over a dependency graph for a program

or an expression e that requires variables Γ . We use an untyped language and so Γ is
just a list of variables x1, . . . , xn. As discussed in appendix B, delayed previews have
an interesting theoretical link with graded comonads. The body of a lambda function
may have a fully evaluated preview if it uses only variables that are bound by earlier
let bindings, but it will typically be delayed. We consider a speculative design for an
abstraction mechanism that better supports instant previews in appendix D.

5.2 Evaluation of previews

The evaluation of previews is defined in figure 8. Given a dependency graph (V, E),
the relation v ⇓ d evaluates a sub-expression corresponding to the node v to a possibly
delayed preview d. The nodes V and edges E of the graph are parameters of ⇓, but
they do not change during the evaluation and so we do not explicitly write them.
The auxiliary relation v ⇓lift d always evaluates to a delayed preview. If the ordinary

evaluation returns a delayed preview, so does the auxiliary relation (lift-expr). If the
ordinary evaluation returns a value, the value is wrapped into a delayed preview
requiring no variables (lift-prev). A node representing a value is evaluated to a value
(val) and a node representing an unbound variable is reduced to a delayed preview
that requires the variable and returns its value (var).
For member access, we distinguish two cases. If all arguments evaluate to values

(member-val), then we use the evaluation relation defined by external libraries ε
to immediately evaluate the member access and produce a value. If some of the
arguments are delayed (member-expr), because the member access is inside the body

8:14

Tomas Petricek

of a lambda function, we produce a delayed member access expression that requires
the union of the variables required by the individual arguments.
The evaluation of function values is similar, but requires three cases. If the body

can be reduced to a value with no unbound variables (fun-val), we return a lambda
function that returns the value. If the body requires only the bound variable (fun-bind),
we return a lambda function with the delayed preview as the body. If the body requires
further variables, the result is a delayed preview.

5.3 Caching of evaluated previews

For simplicity, the relation ⇓ in figure 8 does not specify how previews are cached. In
practice, this is done by maintaining a lookup table from graph nodes v to previews p.
Whenever ⇓ is used to obtain a preview for a graph node, we first check the lookup
table. If the preview has not been previously evaluated, we evaluate it and add it to the
lookup. Cached previews can be reused in two ways. First, if the same sub-expression
appears multiple times in the program, it will share a graph node and the preview
will be resued. Second, when binding modified source code, the process reuses graph
nodes and so previews are also reused during code editing.

6 Evaluating live programming environment

Computing previews using a dependency graph implements a correct and efficient
optimization. In this section we show that this is the case, first theoretically in sec-
tion 6.2, and then empirically in section 6.3. We also describe a case study where we
developed an online service for data exploration based on the methods discussed in
this paper (section 6.4).

6.1 Correctness of previews

To show that the previews are correct, we prove two properties. Correctness (theo-
rem 6) guarantees that, the previews we calculate using a dependency graph are the
same as the values we would obtain by evaluating the program directly. Determinacy
(theorem 7) guarantees that previews assigned to a graph node based on an earlier
graph are the same as previews that we would obtain afres using an updated graph.
To simplify the proofs, we consider programs without let bindings. Eliminating let

bindings does not change the result of evaluation, as shown in lemma 2, and it also
does not change the constructed dependency graph as shown below in lemma 3.

Lemma 3 (Let elimintion for a dependency graph). Given programs p1, p2 such that
p1 let p2 and a lookup table ∆0 then if v1; . . . ; vn, (V, E) = bind-prog;,∆0

(p1) and
v′1; . . . ; v′n, (V ′, E′) = bind-prog;,∆1

(p2) such that ∆1 = updateV,E(∆0) then for all i,
vi = v′i and also (V, E) = (V ′, E′).

Proof. By analysis of the binding process. See appendix A.3.

8:15

Foundations of a live data exploration environment

The lemma 3 provides a way of removing let bindings from a program, such that the
resulting dependency graph remains the same. Here, we bind the original program
first, which adds the node for e to ∆. In our implementation, this is not needed
because ∆ is updated while the graph is being constructed using bind-expr. To keep
the formalisation simpler, we separate the process of building the dependency graph
and updating ∆ and thus lemma 3 requires an extra binding step.
Now, we can show that, given a let-free expression, the preview obtained using a

correctly constructed dependency graph is the same as the one we would obtain by
directly evaluating the expression. This requires a simple auxiliary lemma.

Lemma 4 (Lookup inversion). Given ∆ obtained using update in figure 7 then:
If v =∆(fun(x), [(v0, l0)]) then v = fun(x , s) for some s.
If v =∆(mem(m), [(v0, l0), . . . , (vn, ln)]) then v =mem(m, s) for some s.

Proof. By construction of ∆ in figure 7.

Theorem 5 (Term preview correctness). Given a term t that has no free variables,
together with a lookup table ∆ obtained from any sequence of programs using bind-prog
(figure 6) and update (figure 7), then let v, (V, E) = bind-expr;,∆(t).

If v ⇓ p over a graph (V, E) then p = o for some value o and t ∗ o.

Proof. By induction over the binding process. See appendix A.4.

Theorem 6 (Program preview correctness). Consider a program p = c1; . . . ; cn that
has no free variables, together with a lookup table ∆0 obtained from any sequence of
programs using bind-prog (figure 6) and update (figure 7). Assume a let-free program
p′ = t1; . . . ; tn such that p ∗let p′.
Let v1; . . . ; vn, (V, E) = bind-prog;,∆0

(p) and define updated lookup table ∆1 =
updateV,E(∆0) and let v′1; . . . ; v′n, (V ′, E′) = bind-prog;,∆1

(p).
If v′i ⇓ pi over a graph (V ′, E′) then pi = oi for some value oi and t i oi.

Proof. Direct consequence of lemma 3 and theorem 5.

Our implementation updates ∆ during the recursive binding process and so a
stronger version of the property holds: previews calculated over a graph obtained
directly for the original program p are the same as the values of the fully evaluated
program. Our formalisation omits this for simplicity.
The second important property is determinacy, which makes it possible to cache

the previews evaluated via ⇓ using the corresponding graph node as a lookup key.

Theorem 7 (Preview determinacy). For some∆ and for any programs p, p′, assume that
the first program is bound, i.e. v1; . . . ; vn, (V, E) = bind-prog;,∆(p), the graph node cache
is updated∆′ = updateV,E(∆) and the second program is bound, i.e. v′1; . . . ; v′m, (V ′, E′) =
bind-prog;,∆′(p′). Now, for any v, if v ⇓ p over (V, E) then also v ⇓ p over (V ′, E′).

Proof. By induction over ⇓, show that the same evaluation rules also apply over (V ′, E′).
This is the case, because graph nodes added to ∆′ by updateV,E are added as new
nodes in bind-prog;,∆′ and nodes and edges of (V, E) are unaffected.

8:16

Tomas Petricek

Edit contexts of expressions

Ke[−] = Ke[−].m(e1, . . . , en) | e.m(e1, . . . , el−1, Ke[−], el+1, . . . , en) | −
Kc[−] = let x = Ke[−] | Ke[−]

Code edit operations preserving preview for a sub-expression

(let-intro-var) c1; «e» ; c2 changes to c1; let x = e; «x» ; c2 where x is fresh.

(let-intro-ins) c1; c2; «Kc[e]» ; c3 is changed to c1; let x = e; c2; «Kc[x]» ; c3 via
a semantically non-equivalent expression c1; c2; Kc[x]; c3 where x is free.

(let-intro-del) c1; c2; «Kc[e]» ; c3 is changed to c1; let x = e; c2; «Kc[x]» ; c3

via an expression c1; let x = e; c2; Kc[e]; c3 with unused variable x .

(let-elim-del) c1; let x = e; c2; «Kc[x]» ; c3 is changed to c1; c2; «Kc[e]» ; c3 via
a semantically non-equivalent expression c1; c2; Kc[x]; c3 where x is free.

(let-elim-ins) c1; let x = e; c2; «Kc[x]» ; c3 is changed to c1; c2; «Kc[e]» ; c3 via
an expression c1; let x = e; c2; Kc[e]; c3 with unused variable x .

(edit-mem) c1; Kc[«e0» .m(e)]; c2 is changed to c1; Kc[«e0» .m′(e′)]; c2

(edit-let) c1; let x = e1; c2; Kc[«e2»]; c3 is changed to
c1; let x = e′1; c2; Kc[«e2»]; c3 when x /∈ FV (e2).

Figure 9 Code edit operations that preserve previously evaluated preview

The cache of previews (section 5.3) associates a preview d with a node v as the key.
Theorem 7 guarantees that this is valid. As we update dependency graph during code
editing, previous nodes will continue representing the same sub-expressions.

6.2 Reuse of previews

In this section, we identify a number of code edit operations where the previously
evaluated values for a sub-expression can be reused. This includes the motivating
example from section 1 where the data analyst extracted a constant into a let binding
and modified a parameter of the last method call in a call chain.
The list of preview-preserving edits is shown in figure 9. It includes several ways

of introducing and eliminating let bindings and edits where the analyst modifies
an unrelated part of the program. The list is not exhaustive. Rather, it illustrates
typical edits that the data analyst might perform when writing code. To express the
operations we define an editing context K which is similar to evaluation context C
from figure 3, but allows sub-expressions appearing anywhere in the program.
We use the notation «e» to mark parts of expressions that are not recomputed

during the edit; we write c and e for a list of commands and expressions, respectively.
In some of the edit operations, we also specify an intermediate program that may be
semantically different and only has a partial preview. This illustrates a typical way of
working with code in a text editor using cut and paste. For example, in (let-intro-ins),

8:17

Foundations of a live data exploration environment

the analyst cuts a sub-expression e, replaces it with a variable x and then adds a
let binding for a variable x and inserts the expression e from the clipboard. The
(let-intro-del) operation captures the same edit, but done in a different order.
Theorem 8 proves that the operations given in figure 9 preserve the preview for a

marked sub-expression. It relies on a lemma 13 given in appendix A.5 that generally
characterizes one common kind of edits. Given two versions of a program that both
contain the same sub-expression e, if the let bindings that define the values of variables
used in e do not change, then the graph node assigned to e will be the same when
binding the original and the updated program.

Theorem 8 (Preview reuse). Given the sequence of expressions as specified in figure 9,
if the expressions are bound in sequence and graph node cache updated as specified in
figure 7, then the graph nodes assigned to the specified sub-expressions are the same.

Proof. Cases (edit-let) and (edit-mem) are direct consequences of lemma 13; for (let-
intro-var), the node assigned to x is the node assigned to e which is the same as
before the edit from lemma 13. Cases (let-intro-ins) and (let-intro-del) are similar
to (let-intro-var), but also require using induction over the binding of Kc[e]. Finally,
cases (let-elim-ins) and (let-elim-del) are similar and also use lemma 13 together with
induction over the binding of Kc[x].

6.3 Empirical evaluation of e�ciency

The key performance claim about our method of providing instant feedback is that
it is more efficient than recomputing values for the whole program (or the current
command) after every keystroke. In the previous section, we formally proved that this
is true and gave examples of code edit operations that do not cause recomputation. In
this section, we further support this claim with an empirical evaluation. The purpose
of this section is not to precisely evaluate overheads of our implementation, but to
compare how much recomputation different evaluation strategies perform.
For the purpose of the evaluation, we use a simple image manipulation library

that provides operations for loading, greyscaling, blurring and combining images. We
compare delays in updating the preview for three different evaluation strategies, while
performing the same sequence of code edit operations. Using image processing as an
example gives us a way to visualize the reuse of previously computed values. As in a
typical data exploration scenario, the individual operations are relatively expensive
compared to the overheads of building the dependency graph.
To avoid distractions when visualizing the performance, we update the preview

after complete tokens are added rather than after individual keystrokes. Figure 10
shows the sequence of edits that we use to measure the delays in updating a instant
preview. We first enter an expression to load, greyscale and blur an image (1) then
introduce let binding (2) and add more operations (3). Finally, we extract one of the
parameters into a variable (4). Most of the operations are simply adding code, but
there are two cases where we modify existing code and change value of a parameter
for blur and combine immediately after (1) and (3), respectively.

8:18

Tomas Petricek

(1) Enter the following code and then change parameter of blur from 4 to 8:

image.load("shadow.png").greyScale().blur(4)

(2) Assign the result to a variable and start writing code for further operations:

let shadow= image.load("shadow.png").greyScale().blur(8)
shadow.combine

(3) Finish code to combine two images and change parameter of combine from 20 to 80:

let shadow= image.load("shadow.png").greyScale().blur(8)
shadow.combine(image.load("pope.png"), 20)

(4) Extract the parameter of combine to a let bound variable:

let ratio= 80
let shadow= image.load("shadow.png").greyScale().blur(8)
shadow.combine(image.load("pope.png"), ratio)

Figure 10 Code edit operations that are used in the experimental evaluation

We implement the algorithm described in section 4 section 5 in a simple web-based
environment that allows the user to modify code and explicitly trigger recomputation.
It then measures time needed to recompute values for the whole program and displays
the resulting image. If the parsing fails, we record only the time taken by parsing
attempt. We compare the delays of three different evaluation strategies:
Call-by-value Following the semantics in section 3.2, all sub-expressions are evaluated

before an expression. This is often wasteful. For example, we parse the expres-
sion image.load("shadow.png").blur as a member access with no arguments. The
evaluation loads the image, but then fails because blur requires one argument.

Lazy To address the wastefulness of call-by-value strategy, we simulate lazy evaluation
by implementing a version of the image processing library where operations build
a delayed computation and only evaluate it when rendering an image. Using this
strategy, failing computations do not perform unnecessary work.

Live Finally, we use the algorithm described in section 4 section 5. The cache is empty
at the beginning of the experiment and we update it after each token is added. This
is the only strategy where evaluation does not start afresh after reparsing code.
The experimental environment is implemented in F# and compiled to JavaScript

using the Fable compiler. We run the experiments in Firefox (version 64.0.2, 32bit) on
Windows 10 (build 1809, 64 bit) on Intel Core i7-7660U CPU with 16GB RAM.
Figure 11 shows times needed to recompute previews after individual tokens are

added, deleted or modified, according to the script in figure 10, resulting in 38
measurements. We mark a number of notable points in the chart:

8:19

Foundations of a live data exploration environment

Figure 11 Time required to recompute the results of a sample program after individual
tokens are added or modified for three different evaluations strategies.

Figure 12 Distribution of delays incurred when updating previews. We show a histogram
computed from all delays (left) and only from delays larger than 15ms (right).

8:20

Tomas Petricek

a. Loading image for the first time incurs small extra overhead in the live strategy.
b. Greyscaling using the live strategy does not need to re-load the image.
c. Accessing the blur member without arguments causes delay for call-by-value.
d. When varying the parameter of blur, the live strategy reuses the greyscaled image.
e. Introducing let binding does not cause recomputation when using live strategy.
f. As in (c), accessing a member without an argument only affects call-by-value.
g. The live strategy is much faster when varying the parameter of combine.
h. Introducing let binding, again, causes full recomputation for lazy and call-by-value.
A summarized view of the delays is provided in figure 12, which shows histograms
illustrating the distribution of delays for each of the three evaluation methods. A large
proportion of delays is very small (less than 15ms) because the parser used in our
experimental environment often fails (e.g. for unclosed parentheses). The histogram
on the right summarizes only delays for edit operations where the delay for at least one
of the strategies was over 15ms. The histogram shows that the live strategy eliminates
the longest delays (by caching partial results), with the exception of a few where
the underlying operation takes a long time (such as blurring the image). The results
would be even more significant with an error-recovering parser.
The purpose of our experiment is not to exactly assess the overhead of our imple-

mentation. Our goal is to illustrate how often can previously evaluated results be
reused and the impact this has when writing code. The experiment presented in this
section is small-scale, but it is sufficient for this purpose. When recomputing results af-
ter every edit using the call-by-value strategy, the time needed to update results grows
continually. The lazy strategy removes the overhead for programs that fail, but keeps
the same trend. Our live strategy reuses values computed previously. Consequently,
expensive operations such as (d) and (g) in figure 11 are significantly faster, because
they do not need to recompute operations done previously when writing the code.
As shown in figure 12, there are almost no very expensive operations (taking over 1
second) in the live strategy in contrast to several in the other two strategies.

6.4 Transparent tools for data journalism

In section 2.1, we motivated our work by considering how journalists explore open
data. In addition to the theoretical and experimental work presented in this paper,
we also implemented an online data exploration environment, equipped with live
editor for The Gamma language that provides instant feedback during coding. The
environment uses the principles presented in this paper to build a more comprehensive
system that allows users, such as journalists, to analyse, summarize and visualize
open data. In this section, we briefly report on our experience with the system. Two
screenshots shown in figure 13 illustrate a number of interesting features:

The left screenshot uses a type provider for data aggregation [45]. Type provider
are treated as an external library (with objects, members and reduction relation).
Type providers also rely on type information to provide editor auto-complete, which
we support by implementing type checking over a dependency graph (appendix C).

8:21

Foundations of a live data exploration environment

Figure 13 Data analysis counting the number of libraries per county in the UK. We load and
aggregate data (left) and then create a chart with a label (right). The example
has been created using our tool discussed in section 6.4 by a non-programmer
and is available at http://gallery.thegamma.net/73/.

When displaying instant preview for code written using the data aggregation type
provider (left), our environment generates tabes that show individual steps of the
data transformation. A tab is selected based on the cursor position and shows a
preview for the current sub-expression (e.g. raw data before grouping).
Another external library provides support for charting (right). Here, the environ-
ment displays the result of evaluating the whole command. The screenshot shows a
case where the user modifies parameters of the chart. Thanks to our live evaluation
strategy, this is done efficiently without reevaluating the data transformation.

The environment is available at http://gallery.thegamma.net. A user study to evaluate
the usability of the system from a human-computer interaction perspective is left for
future work. As an anecdotal evidence, the code in figure 13 was developed by an
attendee of a Mozilla Festival 2017 who had no prior programming experience.

7 Related and future work

Simple data exploration performed, for example, by journalists [20] is done either
programmatically or using spreadsheets. The latter is easy but error-prone while the
former requires expert programming skills. We aim to bring liveness of spreadsheets
to programmatic data exploration. This requires extending recomputation as done in
spreadsheets [52] to code written in an ordinary text editor.

Notebooks and data science tools. Visual data exploration tools are interactive [11,
24, 60] and some can export the workflow as a script [26], but data analysts who

8:22

Tomas Petricek

prefer code typically resort to notebook systems such as Jupyter or R Markdown [5,
29]. Those are text-based, but have a limited model of recomputation. Users structure
code in cells and manually reevaluate cells. Many notebook systems are based on the
REPL (read-eval-print-loop) [16, 34] and do not track dependencies between cells,
which can lead to well-documented inconsistencies [30, 46, 49].

Ideas such as dependency tracking and efficient recomputation exist in visual data
exploration tools [11, 24, 60] and scientific workflow systems [6, 41]. The imple-
mentation techniques are related to our work, but we focus on text-based scripts.
Tempe [13] focuses on streaming data, but provides a text-based scripting environment
with automatic code update; its usability in contrast to REPLs has been empirically
evaluated [12].

Live and exploratory programming. Live programming based on textual programs
has been popularised by Victor [57, 58] and is actively developed in domains such
as live coded music [1, 51]. The notions of exploratory and live programming have
been extensively studied [50]. The notion of exploratory programming has recently
been analysed from the perspective of human-computer interaction [28], which led
to new tools [27], complementary to our instant previews. Kubelka, Robbes, and
Bergel [31] review the use of live programming in a Smalltalk derived environment.
Lighttable [19] and Chrome DevTools provide limited instant previews akin to those
presented in this paper, but without well specified recomputation model. Finally, work
on keeping state during code edits [8, 35] would be relevant for supporting streaming
data.
A more principled approach can be used by systems based on structured editing [33,

42, 44, 55] where code is only modified via known operations with known effect on
the computation graph (e.g. “extract variable” has no effect on the result; “change
constant value” forces recomputation of subsequent code). This can be elegantly
implemented using bi-directional lambda calculus [43], but it also makes us consider
more human-centric abstractions [14, 15] further discussed in appendix D.

Incremental computation and dependency analysis. Work on self-adjusting and incre-
mental computation [2, 23] handles recomputation when the program stays the same,
but input changes. Most incremental systems, e.g. [3, 4, 22] evaluate the program
and use programmer-supplied information to build a dependency graph, whereas
our system uses static code analysis;[23] implement a small adaptive interpreter that
treats code as changing input data, suggesting an implementation technique for live
programming systems. Our use of dependency graphs [32] is static and first-order and
can be seen as a form of program slicing [59], although our binding process is more
directly inspired by Roslyn [40], which uses it for efficient background type-checking.

Semantics and partial evaluation. The evaluation of previews is a form of partial
evaluation [10], done in a way that allows caching. This can be done implicitly or
explicitly in the form of multi-stage programming [56]. Semantically, the evaluation
of previews can be seen as a modality and delayed previews are linked to contextual
modal type theory [39], formally modelled using comonads [17].

8:23

Foundations of a live data exploration environment

8 Summary

One of the aspects that make spreadsheets easier to use than programming tools is
that they provide instant feedback. We aim to make programming tools as instant as
spreadsheets. We described a number of key aspects of simple data analyses such as
those done by journalists and then used our observations to build both theory and
simple practical data analytics tools.
Our data exploration calculus is a simple formally tractable language for data

exploration. The calculus captures key observations about simple data analyses. They
rely on logic defined by external libraries, implement few abstractions and are written
as lists of commands.
Our main technical contribution is a instant preview mechanism that efficiently

evaluates code during editing and instantly provides a preview of the result. We allow
users to edit code in unconstrained way in an text editor, which makes this particularly
challenging. The key trick is to separate the process into a fast binding phase, which
constructs a dependency graph and a slower evaluation phase that can cache results.
This makes it possible to quickly parse updated code, reconstruct dependency graph
and compute preview using previous, partially evaluated, results.
We evaluated our approach in three ways. First, we proved that our mechanism is

correct and that it reuses evaluated values for many common code edit operations.
Second, we conducted an experimental study that illustrates how often are previously
evaluated results reused during typical programming scenario. Thirdly, we used our
research as a basis for online data exploration environment, which shows the practical
usability of our work.

Acknowledgements We thank Dominic Orchard, Stephen Kell, Roly Perera and
Jonathan Edwards for many discussions about the work presented in the paper. Do-
minic Orchard provided invaluable feedback on earlier version of the paper. The paper
also benefited from suggestions made by anonymous reviewers of The Programming
Journal as well as reviwers of earlier versions of the paper. This work was partly
supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1.

References

[1] Samuel Aaron and Alan F. Blackwell. “From sonic Pi to overtone: creative
musical experiences with domain-specific and functional languages”. In: Pro-
ceedings of the first ACM SIGPLAN workshop on Functional art, music, modeling
& design. Edited by Paul Hudak and Conal Elliott. ACM. 2013, pages 35–46.
doi: 10.1145/2505341.2505346.

[2] Umut A. Acar. “Self-adjusting Computation”. AAI3166271. PhD thesis. Pitts-
burgh, PA, USA, 2005. isbn: 0-542-01547-1.

8:24

Tomas Petricek

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. “Adaptive Functional Pro-
gramming”. In: ACM Transactions on Programming Languages and Systems 28.6
(Nov. 2006), pages 990–1034. issn: 0164-0925. doi: 10.1145/1186632.1186634.

[4] Umut A. Acar and Ruy Ley-Wild. “Self-adjusting Computation with Delta ML”.
In: Advanced Functional Programming: 6th International School, AFP 2008, Hei-
jen, The Netherlands, May 2008, Revised Lectures. Edited by Pieter Koopman,
Rinus Plasmeijer, and Doaitse Swierstra. Volume 5832. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pages 1–38.
isbn: 978-3-642-04652-0. doi: 10.1007/978-3-642-04652-0_1.

[5] JJ Allaire, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron
Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone.
rmarkdown: Dynamic Documents for R. 2016. url: https://github.com/rstudio/
rmarkdown (visited on 2020-01-31).

[6] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,
and Steve Mock. “Kepler: an extensible system for design and execution of
scientific workflows”. In: Scientific and Statistical Database Management. Edited
by Michael Hatzopoulos. IEEE. 2004, pages 423–424. doi: 10.1109/SSDM.2004.
1311241.

[7] David Blood. Recycling is broken – notebooks. Nov. 2018. url: https://github.
com/ft-interactive/recycling-is-broken-notebooks (visited on 2019-02-01).

[8] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid,
Michal Moskal, Nikolai Tillmann, and Jun Kato. “It’s Alive! Continuous Feedback
in UI Programming”. In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. Edited by Hans Boehm and
Cormac Flanagan. PLDI ’13. ACM SIGPLAN, June 2013. doi: 10.1145/2491956.
2462170.

[9] David Raymond Christiansen. “Dependent type providers”. In: Proceedings of
the 9th ACM SIGPLAN workshop on Generic programming. Edited by Jacques
Carette and Jeremiah James Willcock. ACM. 2013, pages 25–34. doi: 10.1145/
2502488.2502495.

[10] Charles Consel and Olivier Danvy. “Tutorial notes on partial evaluation”. In:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. Edited by Mary Van Deusen and Bernard Lang. ACM.
1993, pages 493–501. doi: 10.1145/158511.158707.

[11] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. “Vizdom: Interactive Analytics Through Pen and Touch”. In: Proceedings
of the VLDB Endownment 8.12 (Aug. 2015), pages 2024–2027. issn: 2150-8097.
doi: 10.14778/2824032.2824127.

[12] Rob DeLine and Daniel Fisher. “Supporting exploratory data analysis with
live programming”. In: 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). Edited by Zhen Li, Claudia Ermel, and Scott
Fleming. Oct. 2015, pages 111–119. doi: 10.1109/VLHCC.2015.7357205.

8:25

Foundations of a live data exploration environment

[13] Rob DeLine, Daniel Fisher, Badrish Chandramouli, Jonathan Goldstein, Michael
Barnett, James Terwilliger, and John Wernsing. “Tempe: Live scripting for
live data”. In: 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). Edited by Zhen Li, Claudia Ermel, and Scott Fleming.
Oct. 2015, pages 137–141. doi: 10.1109/VLHCC.2015.7357208.

[14] Jonathan Edwards. Direct Programming. June 2018. url: https://vimeo.com/
274771188 (visited on 2019-02-09).

[15] Jonathan Edwards. “Subtext: uncovering the simplicity of programming”. In:
ACM SIGPLAN Notices 40.10 (2005), pages 505–518. doi: 10 . 1145/1103845 .
1094851.

[16] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. “DrScheme: A program-
ming environment for Scheme”. In: Journal of functional programming 12.2
(2002), pages 159–182. doi: 10.1017/S0956796801004208.

[17] Murdoch J. Gabbay and Aleksandar Nanevski. “Denotation of contextual modal
type theory (CMTT): Syntax and meta-programming”. In: Journal of Applied
Logic 11.1 (2013), pages 1–29. doi: 10.1016/j.jal.2012.07.002.

[18] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and
Tarmo Uustalu. “Combining Effects and Coeffects via Grading”. In: Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming.
Edited by Jacques Garrigue, Gabriele Keller, and Eijiro Sumii. ICFP 2016. Nara,
Japan: Association for Computing Machinery, 2016, pages 476–489. isbn:
9781450342193. doi: 10.1145/2951913.2951939. url: https://doi.org/10.1145/
2951913.2951939.

[19] Chris Granger. LightTable: A new IDE concept. 2012. url: http://www.chris-
granger.com/2012/04/12/light-table-a-new-ide-concept/ (visited on 2020-01-
31).

[20] Jonathan Gray, Lucy Chambers, and Liliana Bounegru. The data journalism
handbook: how journalists can use data to improve the news. O’Reilly Media,
Inc., 2012. isbn: 978-1449330064.

[21] Philip Guo. Data science workflow: Overview and challenges. Blog@CACM, Com-
munications of the ACM. 2013. url: https://cacm.acm.org/blogs/blog-cacm/
169199/fulltext (visited on 2020-01-31).

[22] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S.
Foster, Michael Hicks, and David Van Horn. “Incremental Computation with
Names”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. Edited by
Aldrich Jonathan and Patrick Eugster. OOPSLA 2015. Pittsburgh, PA, USA: ACM,
2015, pages 748–766. isbn: 978-1-4503-3689-5. doi: 10.1145/2814270.2814305.

8:26

Tomas Petricek

[23] Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster.
“Adapton: Composable, Demand-driven Incremental Computation”. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. Edited by Michael O’Boyle and Keshav Pingali. PLDI ’14. Edin-
burgh, United Kingdom: ACM, 2014, pages 156–166. isbn: 978-1-4503-2784-8.
doi: 10.1145/2594291.2594324.

[24] Joseph M. Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston,
Vijayshankar Raman, Tali Roth, and Peter J. Haas. “Interactive data analysis: the
Control project”. In: Computer 32.8 (Aug. 1999), pages 51–59. issn: 0018-9162.
doi: 10.1109/2.781635.

[25] Leslie Hook and John Reed. Why the world’s recycling system stopped working.
Sept. 2018. url: https : //www. ft . com/content/360e2524- d71a - 11e8- a854-
33d6f82e62f8.

[26] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. “Wrangler:
Interactive Visual Specification of Data Transformation Scripts”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. Edited by
Desney Tan, Geraldine Fitzpatrick, Carl Gutwin, Bo Begole, and Wendy Kellogg.
CHI ’11. Vancouver, BC, Canada: ACM, 2011, pages 3363–3372. isbn: 978-1-
4503-0228-9. doi: 10.1145/1978942.1979444.

[27] Mary Beth Kery, Amber Horvath, and Brad Myers. “Variolite: Supporting Ex-
ploratory Programming by Data Scientists”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. Edited by Gloria Mark,
Susan Fussell, Cliff Lampe, Monica Schraefel, Juan Pablo Hourcade, Caro-
line Appert, and Daniel Wigdor. CHI ’17. Denver, Colorado, USA: Association
for Computing Machinery, 2017, pages 1265–1276. isbn: 9781450346559. doi:
10.1145/3025453.3025626.

[28] Mary Beth Kery and Brad A Myers. “Exploring exploratory programming”.
In: 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). Edited by Austin Henley, Peter Rogers, and Anita Sarma. IEEE. 2017,
pages 25–29. doi: 10.1109/VLHCC.2017.8103446.

[29] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Ja-
son Grout, Sylvain Corlay, et al. “Jupyter Notebooks-a publishing format for
reproducible computational workflows”. In: 20th International Conference on
Electronic Publishing. Edited by Fernando Loizides and Birgit Schmidt. 2016,
pages 87–90. doi: 10.3233/978-1-61499-649-1-87.

[30] David Koop and Jay Patel. “Dataflow Notebooks: Encoding and Tracking De-
pendencies of Cells”. In: 9th USENIX Workshop on the Theory and Practice of
Provenance, TaPP 2017, Seattle, WA, USA, June 23, 2017. Edited by Adam Bates
and Bill Howe. 2017. doi: 10.5555/3183865.3183888.

8:27

Foundations of a live data exploration environment

[31] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. “The Road to Live Pro-
gramming: Insights from the Practice”. In: Proceedings of the 40th International
Conference on Software Engineering. Edited by Andrea Zisman and Sven Apel.
ICSE ’18. Gothenburg, Sweden: ACM, 2018, pages 1090–1101. isbn: 978-1-4503-
5638-1. doi: 10.1145/3180155.3180200.

[32] David J. Kuck, Robert H. Kuhn, David A. Padua, Bruce Leasure, and Michael
Wolfe. “Dependence graphs and compiler optimizations”. In: Proceedings of the
8th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
Edited by John White, Richard Jay Lipton, and Patricia Goldberg. ACM. 1981,
pages 207–218. doi: 10.1145/567532.567555.

[33] Eyal Lotem and Yair Chuchem. Lamdu Project. 2018. url: https://github.com/
lamdu/lamdu (visited on 2020-01-31).

[34] John McCarthy. “History of LISP”. In: ACM SIGPLAN Notices 13.8 (Aug. 1978),
pages 217–223. issn: 0362-1340. doi: 10.1145/960118.808387.

[35] Sean McDirmid. “Living It up with a Live Programming Language”. In: Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications. Edited by Richard Gabriel, David Bacon, Cristina
Lopes, and Guy L. Steele Jr. OOPSLA ’07. Montreal, Quebec, Canada: Associ-
ation for Computing Machinery, 2007, pages 623–638. isbn: 9781595937865.
doi: 10.1145/1297027.1297073.

[36] Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy,
and IPython. O’Reilly Media, Inc., 2012. isbn: 978-1449319793.

[37] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of
Computer and System Sciences 17.3 (1978), pages 348–375. issn: 0022-0000.
doi: 10.1016/0022-0000(78)90014-4.

[38] AlanMycroft, Dominic Orchard, and Tomas Petricek. “Effect systems revisited—control-
flow algebra and semantics”. In: Semantics, Logics, and Calculi. Springer, 2016,
pages 1–32. doi: 10.1007/978-3-319-27810-0_1.

[39] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. “Contextual modal
type theory”. In: ACM Transactions on Computational Logic (TOCL) 9.3 (2008),
page 23. doi: 10.1145/1352582.1352591.

[40] Karen Ng, Matt Warren, Peter Golde, and Anders Hejlsberg. The Roslyn Project,
Exposing the C# and VB compiler’s code analysis. Technical report. Microsoft,
2011. url: https://www.microsoft.com/en-us/download/details.aspx?id=27744
(visited on 2020-02-13).

[41] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark
Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, and
Peter Li. “Taverna: a tool for the composition and enactment of bioinformatics
workflows”. In: Bioinformatics 20.17 (2004), pages 3045–3054. doi: 10.1093/
bioinformatics/bth361.

8:28

Tomas Petricek

[42] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. “Live Func-
tional Programming with Typed Holes”. In: PACMPL 3.POPL (2019). doi: 10.
1145/3291622.

[43] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A.
Hammer. “Hazelnut: a bidirectionally typed structure editor calculus”. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. Edited by Giuseppe Castagna and Andrew Gordon. ACM. 2017,
pages 86–99. doi: 10.1145/3009837.3009900.

[44] Roland Perera. “Interactive functional programming”. PhD thesis. University of
Birmingham, 2013. url: https://etheses.bham.ac.uk/id/eprint/4209/ (visited
on 2020-02-13).

[45] Tomas Petricek. “Data Exploration through Dot-driven Development”. In: 31st
European Conference on Object-Oriented Programming (ECOOP 2017). Edited
by Peter Müller. Volume 74. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, 21:1–21:27. isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.
2017.21. url: http://drops.dagstuhl.de/opus/volltexte/2017/7261.

[46] Tomas Petricek, James Geddes, and Charles A. Sutton. “Wrattler: Reproducible,
live and polyglot notebooks”. In: 10th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018. Edited by
Melanie Herschel. 2018.

[47] Tomas Petricek, Gustavo Guerra, and Don Syme. “Types from Data: Making
Structured Data First-Class Citizens in F#”. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. Edited
by Chandra Krintz and Emery Berger. PLDI ’16. Santa Barbara, CA, USA: Asso-
ciation for Computing Machinery, 2016, pages 477–490. isbn: 9781450342612.
doi: 10.1145/2908080.2908115.

[48] Tomas Petricek, Dominic Orchard, and Alan Mycroft. “Coeffects: A Calculus of
Context-Dependent Computation”. In: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. Edited by Johan Jeuring
and Manuel M. T. Chakravarty. ICFP ’14. Gothenburg, Sweden: Association
for Computing Machinery, 2014, pages 123–135. isbn: 9781450328739. doi:
10.1145/2628136.2628160.

[49] João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and
Juliana Freire. “Collecting and analyzing provenance on interactive notebooks:
when IPython meets noWorkflow”. In: Workshop on the Theory and Practice of
Provenance (TaPP). Edited by Paolo Missier and Jun Zhao. 2015, pages 155–167.

[50] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
“Exploratory and Live, Programming and Coding”. In: The Art, Science, and
Engineering of Programming 3.1 (2019). doi: 10.22152/programming-journal.
org/2019/3/1.

8:29

Foundations of a live data exploration environment

[51] Charles Roberts, Matthew Wright, and JoAnn Kuchera-Morin. “Beyond Editing:
Extended Interaction with Textual Code Fragments”. In: Proceedings of the
International Conference on New Interfaces for Musical Expression. Edited by
Edgar Berdahl and Jesse Allison. NIME 2015. Baton Rouge, Louisiana, USA: The
School of Music, the Center for Computation, and Technology (CCT), Louisiana
State University, 2015, pages 126–131. isbn: 9780692495476.

[52] Peter Sestoft. Spreadsheet Implementation Technology: Basics and Extensions.
MIT Press, 2012. isbn: 978-0262526647.

[53] Don Syme. “Leveraging. net meta-programming components from F#: inte-
grated queries and interoperable heterogeneous execution”. In: Proceedings
of the 2006 workshop on ML. Edited by Andrew Kennedy and François Pottier.
ACM. 2006, pages 43–54. doi: 10.1145/1159876.1159884.

[54] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek.
“Themes in information-rich functional programming for internet-scale data
sources”. In: Proceedings of the 2013 workshop on Data driven functional pro-
gramming. Edited by Evelyne Viegas, Karin Breitman, and Judith Bishop. ACM.
2013, pages 1–4. doi: 10.1145/2429376.2429378.

[55] Gerd Szwillus and Lisa Neal. Structure-based editors and environments. Aca-
demic Press, Inc., 1996. isbn: 978-0126818901.

[56] Walid Taha and Tim Sheard. “MetaML and multi-stage programming with
explicit annotations”. In: Theoretical computer science 248.1 (2000), pages 211–
242. doi: 10.1016/S0304-3975(00)00053-0.

[57] Bret Victor. Inventing on Principle. 2012. url: http://worrydream.com/Inventin
gOnPrinciple (visited on 2020-01-31).

[58] Bret Victor. Learnable programming: Designing a programming system for under-
standing programs. 2012. url: http://worrydream.com/LearnableProgramming
(visited on 2020-01-31).

[59] Mark Weiser. “Program slicing”. In: Proceedings of the 5th international confer-
ence on Software engineering. Edited by Leon George Stucki. IEEE Press. 1981,
pages 439–449. doi: 10.1109/TSE.1984.5010248.

[60] Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. “An Analytic Data
Engine for Visualization in Tableau”. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. Edited by Timos Sellis, Renée
Miller, Anastasios Kementsietsidis, and Yannis Velegrakis. SIGMOD ’11. Athens,
Greece: ACM, 2011, pages 1185–1194. isbn: 978-1-4503-0661-4. doi: 10.1145/
1989323.1989449.

8:30

Tomas Petricek

A Details of proofs

A.1 Normalization for data exploration calculus

Theorem 9 (Normalization). For all p, there exists n and o1, . . . , on

such that p ∗ o1; . . . ; on.

Proof. We define size of a program in data exploration calculus as follows:

size(c1; . . . ; cn) = 1+Σn
i=1size(ci)

size(let x = t) = 1+ size(t)
size(e0.m(e1, . . . , en)) = 1+Σn

i=0size(ei)
size(λx → e) = 1+ size(e)

size(o) = size(x) = 1

(10)

The property holds because, first, both (let) and (external) decrease the size of the
program and, second, a program is either fully evaluated, i.e. o1; . . . ; on for some n or,
it can be reduced using one of the reduction rules.

A.2 Let elimmination for a program

Lemma 10 (Let elimination for a program). Given any program p such that p ∗
o1; . . . ; on for some n and o1, . . . , on then if p let p′ for some p′ then also p′ ∗ o1; . . . ; on.

Proof. The elimination of let binding transforms a program c1; . . . ; ck−1; let x =
t; ck+1; . . . ; cn to a program c1; . . . ; ck−1; t; ck+1[x ← t]; . . . ; cn[x ← t]. The reduction
steps for the new program can be constructed using the steps of p ∗ o1; . . . ; on. The
new command t reduces to an object o using the same steps as the original term t in
let x = t but with context Cc = − rather than Cc = let x = −; the terms t introduced
by substitution also reduce using the same steps as before, but using contexts in which
the variable x originally appeared.

A.3 Let elimination for a dependency graph

Lemma 11 (Let elimintion for a dependency graph). Given programs p1, p2 such that
p1 let p2 and a lookup table ∆0 then if v1; . . . ; vn, (V, E) = bind-prog;,∆0

(p1) and
v′1; . . . ; v′n, (V ′, E′) = bind-prog;,∆1

(p2) such that ∆1 = updateV,E(∆0) then for all i,
vi = v′i and also (V, E) = (V ′, E′).

Proof. Assume p1 = c1; . . . ; ck−1; let x = e; ck+1; . . . ; cn and the let binding is eliminated
resulting in p2 = c1; . . . ; ck−1; e; ck+1[x ← e]; . . . ; cn[x ← e]. When binding p1, the case
bind-progΓ ,∆(let x = e) is handled using (7) and the node resulting from binding e
is added to the graph V, E. It is then referenced each time x appears in subsequent
commands ck+1; . . . ; cn. When binding p2, the node resulting from binding e is a
primitive value or a node already present in ∆1 (added by updateV,E) and is reused
each time bind-exprΓ ,∆1

(e) is called.

8:31

Foundations of a live data exploration environment

A.4 Term preview correctness

Theorem 12 (Term preview correctness). Given a term t that has no free variables,
together with a lookup table ∆ obtained from any sequence of programs using bind-prog
(figure 6) and update (figure 7), then let v, (V, E) = bind-expr;,∆(t). If v ⇓ p over a
graph (V, E) then p = o for some value o and t ∗ o.

Proof. When combining recursively constructed sub-graphs, the bind-expr function
adds new nodes and edges leading from those new nodes. Therefore, an evaluation
using ⇓ over a sub-graph will also be valid over the new graph – the newly added
nodes and edges do not introduce non-determinism to the rules given in figure 8.
We prove a more general property showing that for any e, its binding v, (V, E) =

bind-expr;,∆(e) and any evaluation context C such that C[e] o for some o, one of
the following holds:
a. If FV (e) = ; then v ⇓ p for some p and C[p] o

b. If FV (e) 6= ; then v ⇓ ¹epºFV (e) for some ep and C[ep] o

In the first case, p is a value, but it is not always the case that e ∗ p, because p may
be lambda function and preview evaluation may reduce sub-expression in the body of
the function. Using a context C in which the value reduces to an object avoids this
problem.
The proof of the theorem follows from the more general property. Using a context

C[−] = −, the term t reduces t ∗ t ′ ε o for some o and the preview p is a value
o because C[p] = p = o. The proof is by induction over the binding process, which
follows the structure of the expression:
(1) bind-exprΓ ,∆(e0.m(e1, . . . , en)) – Here e = e0.m(e1, . . . , en), vi are graph nodes ob-

tained by induction for expressions ei and {(v, v0,arg(0)), . . . , (v, vn,arg(n))} ⊆ E.
From lookup inversion lemma 4, v =mem(m, s) for some s.
If FV (e) = ;, then vi ⇓ pi for i ∈ 0 . . . n and v ⇓ p using (mem-val) such that
p0.m(p1, . . . , pn) p. From induction hypothesis and compositionality of external
libraries (definition 2), it holds that for any C such that C[e0.m(e1, . . . , en)] o for
some o then also C[p0.m(p1, . . . , pn)] C[p] o.
If FV (e) 6= ;, then vi ⇓lift ¹e′iº for i ∈ 0 . . . n and v ⇓ ¹e′0.m(e′1, . . . , e′n)ºFV (e) using
(mem-expr). From induction hypothesis and compositionality of external libraries
(definition 2), it holds that for any C such that C[e0.m(e1, . . . , en)] o for some o
then also C[e′0.m(e′1, . . . , e′n)] o.

(2) bind-exprΓ ,∆(e0.m(e1, . . . , en)) – This case is similar to (1), except that the fact that
v =mem(m, s) holds by construction, rather than using lemma 4.

(3) bind-exprΓ ,∆(λx → eb) – Here e = λx → eb, vb is the graph node obtained by
induction for the expression eb and (v, vb,body) ∈ E. From lookup inversion lemma 4,
v = fun(x , s) for some s. The evaluation can use one of three rules:
i. If FV (e) = ; then vb ⇓ pb for some pb and v ⇓ λx → pb using (fun-val). Let

e′b = pb.
ii. If FV (eb) = {x} then vb ⇓ ¹e′bºx for some e′b and v ⇓ λx → e′b using (fun-bind).
iii. Otherwise, vb ⇓ ¹e′bºx ,Γ for some e′b and v ⇓ ¹λx → e′bºΓ using (fun-expr).

8:32

Tomas Petricek

For i.) and ii.) we show that a.) is the case; for iii.) we show that b.) is the case;
that is for any C , if C[λx → eb] o then also C[λx → e′b] o. For a given C , let
C ′[−] = C[λx →−] and use the induction hypothesis, i.e. if C ′[eb] o for some o
then also C ′[e′b] o.

(4) bind-exprΓ ,∆(λx → e) – This case is similar to (3), except that the fact that v =
fun(x , s) holds by construction, rather than using lemma 4.

(5) bind-exprΓ ,∆(o) – In this case e = o and v = val(o) and val(o) ⇓ o using (val) and so
the case a.) trivially holds.

(6) bind-exprΓ ,∆(x) – The initial Γ is empty, so x must have been added to Γ by case
(3) or (4). Hence, v = var(x), v ⇓ ¹xºx using (var) and so ep = e = x and the case
b.) trivially holds.

A.5 Binding sub-expressions

Lemma 13 (Binding sub-expressions). Assume we have programs p1, p2 such that
p1 = c1; . . . ; ck; Kc[e]; ck+1; . . . ; cn and p2 = c′1; . . . ; c′k; K ′c[e]; c′k+1; . . . ; c′n and I ⊆ {1 . . . k}
such that ∀i ∈ I . ci = c′i and for each x ∈ ⋃i∈I FV (ci) ∪ FV (e) there exists j ∈ I such
that c j = let x = e for some e. Given any ∆, assume that the the first program is bound,
i.e. v1; . . . ; vn, (V, E) = bind-prog;,∆(p1), the cache is updated ∆′ = updateV,E(∆) and
the second program is bound, i.e. v′1; . . . ; v′n, (V ′, E′) = bind-prog;,∆′(p2).
Now, assume v, G = bind-exprΓ ,∆(e) and v′, G′ = bind-exprΓ ′,∆′(e) are the recursive

calls to bind e during the first and the second binding, respectively. Then, the graph nodes
assigned to the sub-expression e are the same, i.e. v = v′.

Proof. First, assuming that ∀x ∈ FV (e).Γ (x) = Γ ′(x), we show by induction over the
binding process of e for the first program that the result is the same. In cases (1) and
(3), the updated ∆′ contains the required key and so the second binding proceeds
using the same case. In cases (2) and (4), the second binding reuses the node created
by the first binding using case (1) and (3), respectively. Cases (5) and (6) are the
same.
Second, when binding let bindings in c1; . . . ; ck, the initial Γ = ; during both bindings.

Nodes added to Γ and Γ ′ for commands c j such that j ∈ I are the same and nodes
added for remaining commands do not add any new nodes referenced from e and so
v = v′ using the above.

B Theories of delayed previews

The operational semantics presented in this paper serves two purposes. It gives a
simple guide for implementing text-based live programming environments for data
science and we use it to prove that our optimized way of producing instant previews
is correct. However, some aspects of our mechanism are related to important work in
semantics of programming languages and deserve to be mentioned.

8:33

Foundations of a live data exploration environment

mem(m, s0)

arg(1) --

arg(0) // val(o) var(x , s1)
callsite(m,1)oo

fun(x , s2)

callsite(m,1)

OO

body

==

Figure 14 Dependency graph for o.m(λx → x) with a newly added callsite edges.

The construction of delayed previews is related to meta-programming. Assuming
we have delayed previews ¹e0ºx and ¹e1ºy and we invoke a member m on e0 using e1

as an argument. To do this, we construct a new delayed preview ¹e0.m(e1)ºx ,y . This
operation is akin to expression splicing from meta-programming [53, 56].
The semantics of delayed previews can be more formally captured by Contextual

Modal Type Theory (CMTT) [39] and comonads [17]. In CMTT, [Ψ]A denotes that a
proposition A is valid in context Ψ, which is similar to our delayed previews written as
¹AºΨ . CMTT defines rules for composing context-dependent propositions that would
allow us to express the splicing operation used in (mem-expr). In categorical terms,
the context-dependent proposition can be modelled as a graded comonad [18, 38].
The evaluation of a preview with no context dependencies (built implicitly into our
evaluation rules) corresponds to the counit operation of a comonad and would be
explicitly written as ¹Aº;→ A.

C Type checking

Instant previews give analysts quick feedback when they write incorrect code, but
having type information is still valuable. First, it can help give better error messages.
Second, types can be used to provide auto-complete – when the user types ‘.’ we
can offer available members without having to wait until the value of the object is
available.

Revised dependency graph. Type checking of small programs is typically fast enough
that no caching is necessary. However, The Gamma supports type providers [9, 54],
which can generate types based on an external file or a REST service call, e.g. [47].
For this reason, type checking can be relatively time consuming and can benefit from
the same caching facilities as those available for instant previews.
Adding type checking requires revising the way we construct the dependency graph

introduced in section 4. Previously, a variable bound by a lambda function had no
dependencies. However, the type of the variable depends on the context in which it
appears. Given an expression o.m(λx → x), we infer the type of x from the type of
the first argument of the member m. A variable node for x thus needs to depend on
the call site of m. We capture that by adding an edge callsite(m, i) from x to o which
indicates that x is the input variable of a function passes as the ith argument to the m
member of the expression represented by the target node. We also add callsite(m, i)

8:34

Tomas Petricek

(var)

(var(x , s), v, callsite(m, i)) ∈ E
v ` {.., m : (τ1, . . . ,τk)→ τ, ..} τi = τ′→ τ′′

var(x , s) ` τ′

(mem)

∀i ∈ {0 . . . k}.(mem(m, s), vi ,arg(i)) ∈ E
v0 ` {.., m : (τ1, . . . ,τk)→ τ, ..} vi ` τi

mem(m, s) ` τ

(fun)

{(fun(x , s), vb,body), (var(x , s), vc , callsite(m, i))} ⊆ E
vc ` {.., m : (τ1, . . . ,τk)→ τ, ..} τi = τ′→ τ′′ vb ` τ′′

fun(x , s) ` τ′→ τ′′

Figure 15 Rules that define type checking of terms and expressions over a dependency
graph (V, E)

as an edge from the node of the function. Figure 14 shows the revised dependency
graph for o.m(λx → x).

Type checking. The structure of typing rules is similar to the evaluation relation v ⇓ d
defined earlier. Given a dependency graph (V, E), we define typing judgements in the
form v ` τ. The type τ can be a primitive type, a function τ→ τ or an object type
{m1 :σ1, . . . , mn :σn} with member types σ = (τ1, . . . ,τn)→ τ.
The typing rules for variables, functions and member access are shown in figure 15.

When type checking a member access (mem), we find its dependencies vi and check
that the instance is an object with the required member m. The types of arguments
of the member then need to match the types of the remaining (non-instance) nodes.
Type checking a function (fun) and a variable (var) is similar. In both cases, we follow
the callsite edge to find the member that accepts the function as an argument and
use the type of the argument to check the type of the function or infer the type of the
variable.
The results of type checking can be cached and reused in the same way as instant

previews, although we leave out the details. A property akin to correctness (theorem 6)
requires defining standard type checking over the structure of expressions, which we
also omit for space reasons.

D Feedback-friendly abstraction

The data analysis by Financial Times in section 2.1 illustrates why notebook users
often avoid abstraction. Wrapping code in a function makes it impossible to split code
into cells and see results of intermediate steps. Instead, the analysis used a global
variable with possible values in a comment.

Providing instant previews inside ordinary functions is problematic, because we do
not have readily available values for input parameters and our mechanism for lambda
functions only provides delayed previews inside body of a function. We believe that

8:35

Foundations of a live data exploration environment

extending the data exploration calculus with an abstraction mechanism that would
support development with instant feedback is an interesting design problem and we
briefly outline a possible solution here.
Data scientists often write code interactively using a sample data set and, when

it works well, wrap it into a function that they then call on other data. Similarly,
spreadsheet users often write equation in the first row of a table and then use the
“drag down” operation to apply it to other rows. Oneway of adding similar functionality
to the data exploration calculus is to label a sequence of commands such that the
sequence can be reused later with different inputs:

p = c1; . . . ; cn

c = let x = t | t | lbl: p | lbl

We introduce two new kinds of commands: a labelled sequence of commands and a
reference to a label. When evaluating, the command lbl is replaced with the associated
sequence of commands p before any other reductions. Consequently, variables used
in the labelled block are dynamically scoped and we can use let binding to redefine a
value of a variable before invoking the block repeatedly. The correct use of dynamic
scoping can be checked using coeffects [48].
This minimalistic abstraction mechanism supports code reuse without affecting

how instant previews are computed. Commands in a labelled block require variables
to be defined before the block. Those define sample data for development and can
be redefined before reusing the block. We intend to implement this mechanism in a
future version of our data exploration environment (section 6.4).

8:36

Chapter 9

Wrattler: Reproducible, live and polyglot notebooks

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live andpolyglot notebooks. In 10th USENIX Workshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

147

Wrattler: Reproducible, live and polyglot notebooks
Tomas Petricek
University of Kent

The Alan Turing Institute
tomas@tomasp.net

James Geddes
The Alan Turing Institute
jgeddes@turing.ac.uk

Charles Sutton
The University of Edinburgh

The Alan Turing Institute and Google
csutton@inf.ed.ac.uk

Abstract
Notebooks such as Jupyter became a popular environment
for data science, because they support interactive data explo-
ration and provide a convenient way of interleaving code,
comments and visualizations. Alas, most notebook systems
use an architecture that leads to a limited model of interac-
tion and makes reproducibility and versioning difficult.
In this paper, we present Wrattler, a new notebook sys-

tem built around provenance that addresses the above issues.
Wrattler separates state management from script evaluation
and controls the evaluation using a dependency graph main-
tained in the web browser. This allows richer forms of inter-
activity, an efficient evaluation through caching, guarantees
reproducibility and makes it possible to support versioning.

1 Introduction
Notebooks [5, 15] are literate programming [6] systems that
allow interleaving text, code and outputs. To aid reproducible,
exploratory data science, notebook systems should provide:
Richer interaction model. Web browsers are increasingly
powerful and allow moving parts of data exploration to the
client-side. Notebooks should leverage this and give live pre-
views when writing code to perform simple data exploration.
Transparent state management. The state maintained by
a notebook should be transparent and accessible to external
tools. This would allow versioning of state and development
of tools that provide hints based on the notebook state.
Multiple languages and tools. A notebook should make
it easy to combine multiple programming languages. A cell
written in one language should be able to automatically
access data frames defined in other languages.
Improved reproducibility. Changing code in a cell should
invalidate results that depend on data frames defined in the
cell. Reverting a change should immediately revert the result
to the previous one and show it immediately using a cache.
Supporting these is a challenge that combines several re-
search areas. We need programming language techniques to
efficiently update live previews during editing, provenance
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
TaPP 2018, July 11–12, 2018, London, UK
Copyright remains with the owner/author(s).

methods to track data dependencies and data representation
that can be shared across langauges.

Wrattler is a new notebook system that supports the above
features. We follow a line of work combining provenance
tracking with notebooks [7, 14], but rather than extending
existing systems, we revisit two core aspects of the note-
book architecture (Section 2). First, Wrattler uses a depen-
dency graph to track provenance between cells and even
function calls inside individual cells (Section 3.1). When a
cell is changed, relevant parts of a graph are invalidated.
This guarantees reproducibility and enables more efficient
re-computation. Second, Wrattler introduces a data store
that separates state management from code execution (Sec-
tion 3.2). The data store handles versioning and simplifies
the support for polyglot programming.

Together, these two changes to the standard architecture
of notebook systems make Wrattler notebooks (Section 4)
polyglot, reproducible (with an easy and reliable state roll-
back) and live (with efficient re-computation on change that
enables live preview during data exploration).

2 Wrattler architecture
Standard notebook architecture consists of a notebook and a
kernel. The kernel runs on a server, evaluates code snippets
and maintains state they use. Notebook runs in a browser
and sends commands to the kernel in order to evaluate cells
selected by the user. As illustrated in Figure 1, Wrattler splits
the server functionality between two components:

Python runtime (server)

Data store
(server)

Notebook
(browser)

TheGamma runtime (browser)

Wrattler architecture

Kernel
(server)

Notebook
(browser)

Jupyter architecture

Figure 1. In notebook systems such as Jupyter, state and execu-
tion is managed by a kernel. In Wrattler, those functions are split
between data store and language runtimes. Language runtimes can
run on the server-side (e.g. Python) or client-side (e.g. TheGamma).

1

TaPP 2018, July 11–12, 2018, London, UK Tomas Petricek, James Geddes, and Charles Sutton

Data acquisition
(Python)

Data cleaning
(TheGamma)

Data visualization
(JavaScript)

Figure 2. Dependency graph of a sample notebook: The first
(Python) cell downloads data and exports the result as a data
frame; the second (TheGamma) cell performs data cleaning and
the third (JavaScript) cell creates a visualization. Language run-
time for TheGamma runs in the browser and creates a fine-grained
graph (which allows an efficient live previews), while Python and
JavaScript runtimes create just one node for the whole source code.

Data store. Imported external data and results of running
scripts are stored in the data store. The data store keeps
version history and annotates data with metadata such as
types, inferred semantics and provenance information.

Language runtimes. Code in notebook cells is evaluated
by language runtimes. The runtimes read input data from
and write results back to the data store. Wrattler supports
language runtimes that run code on the server (similar to
Jupyter), but also browser-based langauge runtimes.

Notebook. The notebook is displayed in a web browser and
orchestrates all other components. The browser builds a de-
pendency graph between cells or individual calls. It invokes
language runtimes to evaluate code that has changed, and
reads data from the data store to display results.

3 Wrattler components
Wrattler runs in the web browser and communicates with the
data store and language runtimes that may run on the server
or in the browser. An example of browser-based language
runtime is TheGamma [12], discussed in Section 3.3.

3.1 Dependency graph
At runtime, Wrattler maintains a dependency graph that is
composed from sub-graphs created by individual language
runtimes. The graph is acyclic and a node can only depend
on earlier nodes. Each node has a value which may be:
• A language-specific value that Wrattler does not un-
derstand. This is kept in the browser and re-computed
when the notebook is re-opened.
• A data frame. Data frame is stored in the data store
and browser keeps a reference (URL) of the frame. This
is understood by all language runtimes and provides a
way of exchanging data between multiple languages.

Figure 2 shows a sample dependency graph. Wrattler creates
two nodes for each cell (representing the cell and its source
code) and a node for each data frame exported by a cell
(e.g. the rightmost node in the first cell). Nodes in subsequent
cells may depend on data frames exported by earlier cells.
Wrattler treats data frames in a special way. They are

stored in data store and each langauge runtime is responsible
for loading them into a native language representation (e.g.
pandas in Python and array of records in JavaScript).

Dependency graph construction. The dependency graph
is updated after every code change. Wrattler invokes indi-
vidual langauge runtimes to parse each cell. Language run-
times that run in the browser (e.g. TheGamma) produce a
fine-grained syntax tree. The result of parsing the whole
notebook is then a list of elements obtained for each cell.

Wrattler thenwalks over the syntax tree and binds a depen-
dency graph node to each syntactic element using a process
decribed in Figure 3. The antecedents of a node are the nodes
that it depends on. This typically includes inputs for an op-
eration or instance on which a member access is performed.

Checking and evaluation. Nodes in the dependency graph
can be annotated with information such as the evaluated
value of the syntactic element that the node represents. An
important property of the binding process (Figure 3) is that,
if there is no change in antecedents of a node, binding will
return the same node as before. As a result, previously eval-
uated values attached to nodes in the graph are reused.
Wrattler re-evaluates parts of the dependency graph on

demand and the displayed results and visualizations always
reflect the current source code in the notebook. When the
evaluation of a cell is requested, Wrattler recursively evalu-
ates all the antecedents of the node and then evaluates the
value of the node. The evaluation is delegated to a language
runtime associated with the language of the node:

1. For Python nodes, the language runtime sends the
source code, together with its dependencies, to a server
that retrieves the dependencies and evaluates the code.

2. For TheGamma and JavaScript nodes, the language
runtime collects values of the dependencies and runs
the operation that the node represents in the browser.

3.2 Data store
The data store enables communication between individual
Wrattler components and provides a way for persistently
storing input data. Data frames stored in the data store are
associated with the hash produced by the binding process
outlined in Figure 3 and are immutable. When the notebook
changes, new nodes with new hashes are created and ap-
pended to the data store. This means that language runtimes
can cache them and avoid fetching data from data store each
time they need to evaluate a code snippet.

2

Wrattler: Reproducible, live and polyglot notebooks TaPP 2018, July 11–12, 2018, London, UK

procedure bind(cache, syn) =
let h = hash({kind(syn)} ∪ antecedents(syn))
if not contains(cache,h) then

let n = fresh node
value(n), hash(n) ← Unevaluated,h
set(cache,h,n)

lookup(cache,h)

Figure 3. When binding a graph node to a syntactic element,
Wrattler first computes a set of hashes that uniquely represent the
node. This includes hash of the kind of the node (e.g. the source
code of a Python node or member name in TheGamma) and hashes
of all antecedents. If a node with a given hash does not exist in
cache, a new node is created. We set its hash, indicate that its value
has not been evaluated and add it to the cache.

External inputs imported into Wrattler notebooks (such
as downloaded web pages) are stored as binary blobs. Data
frames are stored in JSON format (as an array of records), but
we intend to use a suitable database in the future. During the
binding process (Section 3.1), a langauge runtime identifies
imported and exported data frames for each cell (e.g. by static
analysis of the code). Those are then represented as hashes
(keys) referring to a location in the data store.

The data store also supports a mechanism for annotat-
ing data frames with semantic information. Columns can
be annotated with primitive data types (date, floating-point
number) and semantic annotation indicating their meaning
(address or longitude and latitude). Columns, rows and in-
dividual cells of the data frame can also be annotated with
custom metadata such as their data source or accuracy.
In addition to storing the raw data, the data store also

persistently stores the current and multiple past versions of
the dependency graph constructed from the notebook (saved
by an explicit checkpoint). This makes it possible to analyse
the history of a notebook and track how data is transformed
by the computation in a notebook.

3.3 TheGamma script
The Wrattler architecture supports languages that can be
parsed and evaluated in the browser. To illustrate this, we
integrated Wrattler with TheGamma [12], a simple browser-
based language for data exploration.
The Figure 4 shows TheGamma cell in Wrattler during

editing. The example uses broadband speed data published by
the UK government [10] and calculates average download
speed in urban and rural areas, respectively. TheGamma
supports a rich interactive model in two ways:
• The script is evaluated on-the-fly during editing and a
live preview is shown (below the code editor).
• All code can be written using autocomplete that offers
available members (representing aggregation opera-
tions). Rather than writing code, user repeatedly se-
lects one of the offered members (which are provided
by a type provider [18] running in the browser).

For the purpose of this paper, the most important aspect
of TheGamma is that scripts can be parsed and evaluated in
the browser. This allows more interactive style of data ex-
ploration without round-trips to re-evaluate modified code.

4 Properties of Wrattler
The Wrattler architecture outlined in Section 2 allowed us
to develop a prototype system with a number of properties
that are difficult to obtain with traditional notebooks.

4.1 Reproducible, live and smart
The two most important aspects of the Wrattler architecture
are that it separates the state from the language runtime
(using a data store) and that it keeps a dependency graph
based on the current notebook source code (on the client).
The provenance information that is available thanks to this
arhcitecture enable a number of properties.

Reproducibility. The evaluation outputs displayed in Wrat-
tler notebook always reflect the current source code. When
code changes, Wrattler updates the dependency graph and
hides invalidated visualizations. Because the data store caches
earlier results, it is always possible to go back without re-
evaluating the whole notebook.

Refactoring. The dependency graph allows us to implement
notebook refactoring. For example, it is possible to extract
only code necessary to produce a given visualization. For
code written in TheGamma, this extracts individual oper-
ations; for Python or JavaScript, we can currently extract
code at cell-level granularity.

Live previews. The dependency graph makes it possible to
give live previews during development. When code changes,
only values for new nodes in the graph need to be calcu-
lated. The fine-grained structure of the dependency graph for
TheGamma makes it possible to update previews instantly.

Polyglot. Sharing the state via data store makes it possible to
combine multiple language runtimes, as long as they support
sharing data via data frames. In our prototype, this includes
R, JavaScript and TheGamma script, but the extensibility
model allows adding further languages.

4.2 Wrattler prototype
A prototype implementation of the Wrattler system is avail-
able on GitHub (http://github.com/wrattler). The prototype
implements language runtimes for TheGamma script (Sec-
tion 3.3), R and JavaScript. It builds a dependency graph
(Section 3.1) and uses it to evaluate results of cells.

The data store (Section 3.2) stores data in Microsoft Azure
in JSON format. Support for meta-data annotations and big
data is not yet implemented. Storing notebook state in the
data store also allowed us to develop an integrationwith Data
diff [17], which provides data cleaning recommendations.

3

TaPP 2018, July 11–12, 2018, London, UK Tomas Petricek, James Geddes, and Charles Sutton

Figure 4. TheGamma script that downloads and aggregates UK
government data, running inWrattler notebook with a live preview.

5 Related work
The work in this paper directly follows the work on IPython
and Jupyter systems [5, 15]. Wrattler shares many properties
with those and aims to address some of their limitations. To
address reproducibility, some Jupyter extensions and systems
such as R markdown lock cells after evaluation.

Dataflow notebooks [7] attach unique hashes to cell evalu-
ations. This allows the user to refer to dependencies explicitly
and, in effect, construct a dependecy graph manually. Sci-
entific workflow systems [1, 11] manage evaluation over a
dependency graph similarly to Wrattler, but allow editing it
directly via a GUI, rather than through code in a notebook.

The noWorkflow project [14] links the two approaches by
instrumenting Jupyter kernel with a mechanism for captur-
ing provenance based on light-weight annotations. Vizer [4]
focuses on integrating notebooks with spreadsheet-like in-
terface. It internally uses a data store component similar to
ours, but does not keep dependency graph on the client.

Our binding process is inspired by Roslyn [9] and extends
an earlier work on TheGamma [13]. It is simiar to methods
used in live programming languages [3, 8], incremental com-
pilation [16] and partial evaluation [2]. Wrattler adapts those
methods to a notebook environment.

6 Summary
This paper presents early work onWrattler – a new notebook
system for data science that makes notebooks reproducible,
live and polyglot. The properties of Wrattler are enabled by
provenance information that is maintained thanks to two
changes to the standard architecture of notebook systems.

First, Wrattler separates the state management from code
execution. This allows versioning, polyglot notebooks and
integration of third-party tools that can work directly with
the data store. Second, Wrattler keeps a dependency graph
on the client (web browser) and uses it to control evaluation.
This guarantees reproducibility and allows faster feedback
during development.

Acknowledgments
The authors would like to acknowledge the funding provided
by the UK Government’s Defence & Security Programme in
support of the Alan Turing Institute and the EPSRC grant
EP/N510129/1. We thank to our colleagues Chris Williams,
Zoubin Ghahramani and Ian Horrocks and attendees of a
recent AIDA project workshop.

References
[1] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram

Ludascher, and Steve Mock. 2004. Kepler: an extensible system for
design and execution of scientific workflows. In Scientific and Statistical
Database Management. IEEE, 423–424.

[2] Olivier Danvy. 1999. Type-directed partial evaluation. In Partial
Evaluation. Springer, 367–411.

[3] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-
gramming. ACM SIGPLAN Notices 40, 10 (2005), 505–518.

[4] Juliana Freire, Boris Glavic, Oliver Kennedy, and Heiko Mueller. 2016.
The Exception That Improves the Rule. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA ’16). ACM, 7:1–7:6.

[5] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a
format for reproducible computational workflows.. In ELPUB. 87–90.

[6] Donald Ervin Knuth. 1992. Literate programming. Center for the Study
of Language and Information Stanford.

[7] David Koop and Jay Patel. 2017. Dataflow Notebooks: Encoding and
Tracking Dependencies of Cells. In 9th {USENIX} Workshop on the
Theory and Practice of Provenance (TaPP 2017). USENIX Association.

[8] Sean McDirmid. 2007. Living it up with a live programming language.
In ACM SIGPLAN Notices, Vol. 42. ACM, 623–638.

[9] Karen Ng, Matt Warren, Peter Golde, and Anders Hejlsberg. 2011.
The Roslyn Project, Exposing the C# and VB compiler’s code analysis.
White paper, Microsoft (2011).

[10] Ofcom. 2018. Open data. Available online at https://www.ofcom.org.
uk/research-and-data/data/opendata. (2018).

[11] TomOinn,MatthewAddis, Justin Ferris, DarrenMarvin,Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil
Wipat, et al. 2004. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 20, 17 (2004), 3045–3054.

[12] Tomas Petricek. 2017. Data exploration through dot-driven develop-
ment. In Proceedings of ECOOP, Vol. 74. Schloss Dagstuhl.

[13] Tomas Petricek. 2018. Design and implementation of a live coding
environment for data science. Unpublished draft. Available online at
http://tomasp.net/academic/drafts/live. (2018).

[14] João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta,
and Juliana Freire. 2015. Collecting and analyzing provenance on
interactive notebooks: when IPython meets noWorkflow. In Workshop
on the Theory and Practice of Provenance (TaPP). 155–167.

[15] M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J Frederic,
and M Bussonnier. 2014. The Jupyter/IPython architecture: a uni-
fied view of computational research, from interactive exploration to
communication and publication.. In AGU Fall Meeting Abstracts.

[16] Mayer D Schwartz, Norman M Delisle, and V S Begwani. 1984. Incre-
mental compilation in Magpie. SIGPLAN Not. 19, 6 (1984), 122–131.

[17] Charles Sutton, Tim Hobson, James Geddes, and Rich Caruana. 2018.
Data Diff: Interpretable, Executable Summaries of Changes in Distri-
butions for Data Wrangling. Proceedings of KDD. (2018).

[18] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas
Petricek. 2013. Themes in information-rich functional programming
for internet-scale data sources. In Proceedings of DDFP. ACM, 1–4.

4

Part IV

Publications: Iterative prompting

152

Chapter 10

The Gamma: Programmatic data exploration for
non-programmers

Tomas Petricek. 2022. The Gamma: Programmatic Data Exploration for Non-programmers.In 2022 IEEE SymposiumonVisual Languages andHuman-Centric Computing, VL/HCC2022,
Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, Michelle Brach-man, and Mark Minas (Eds.). IEEE, 1–7. https://doi.org/10.1109/VL/HCC53370.2022.9833134

153

https://doi.org/10.1109/VL/HCC53370.2022.9833134

The Gamma: Programmatic Data
Exploration for Non-programmers

Tomas Petricek
University of Kent, UK and Charles University, Czech Republic

tomas@tomasp.net

Abstract—Data exploration tools based on code can access any
data source, result in reproducible scripts and encourage users
to verify, reuse and modify existing code. Unfortunately, they are
hard to use and require expert coding skills. Can we make data
exploration tools based on code accessible to non-experts?

We present The Gamma, a novel text-based data exploration
environment that answers the question in the affirmative. The
Gamma takes the idea of code completion to the limit. Users
create transparent and reproducible scripts without writing code,
by repeatedly choosing from offered code completions.

The Gamma is motivated by the needs of data journalists and
shows that we may not need to shy away from code for building
accessible, reproducible and transparent tools that allow a broad
public to benefit from the rise of open data.

Index Terms—data exploration, data journalism

I. INTRODUCTION

Despite the advances on visual tooling, programmatic data
exploration remains the choice of expert analysts. It is flexibile,
offers greater reusability and leads to transparent analyses. The
design of a programmatic data exploration tool that would
be accessible to data journalists poses a number of design
challenges. First, the tool needs to have a low barrier to entry
to support first-time users without training. Second, it needs
to support multiple data sources in a uniform way to allow
transfer of knowledge across domains. Finally, users need to
be able to learn by looking at existing data analyses.

We present The Gamma, a text-based data exploration tool
for non-experts that is based on a single, easy to understand
interaction principle. It provides a uniform access to data
tables, graph databases and data cubes and leads to transparent
analyses that can be easily reproduced, encouraging learning
and critical engagement with data.

The Gamma is based on iterative prompting, which turns
code completion from a programmer assistance tool into
a non-expert programming mechanism that allows users to
construct all valid data exploration scripts just by repeatedly
choosing an item from a list of offered options. The design
favors recognition over recall and allows non-programmers
to construct entire scripts without first learning to code. Yet,
the result remains a transparent and reproducible script. A
crucial feature is that iterative prompting only offers operations
that are valid in a given context and that it offers all such
operations; it is both correct and complete.

The Gamma focuses on tasks that a data journalist may want
to complete (Figure 1). The user accesses data available in a

Fig. 1: Obtaining teams with the greatest number of gold medals from Rio
2016 Olympics: (1) Reproducible The Gamma script; (2) contextual iterative
prompting offering ways of sorting the data; (3) an instant preview of results.

structured format. They make several experiments to find an
interesting insight, e.g. by applying different aggregations or
filters. They visualize the results using a table or a chart before
publishing their analysis. The Gamma makes such program-
matic data exploration simple enough for non-programmers.
Scraping and cleaning of messy data or building custom data
visualizations is outside of the scope of our work, but exposing
such functionality using iterative prompting is an interesting
and worthwhile future challenge.

In this paper, we describe and evaluate the design principles
behind The Gamma project:

• We introduce the iterative prompting principle in The
Gamma (Section III) and show how it can be used for
querying of distinct data sources including data tables,
graph databases and data cubes (Section IV).

• We illustrate the expressiveness of the system through
a case study (Section V) and evaluate it through a user
study (Section VI), confirming that non-programmers can
use The Gamma to construct non-trivial data queries.

• We reflect how our design lowers barriers to entry,
supports learning without experts and offers a complete
and correct program construction method (Section VII).

The Gamma is available at http://thegamma.net, both as an
open-source library and a hosted data exploration service.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

II. RELATED WORK

We aim to make recent advances on information-rich program-
ming [1] available to non-programmers [2], [3], in the context
of data journalism [4]. Our work features a novel combination
of characteristics in that our iterative prompting interaction
principle is centered around code, but reduces the conceptual
complexity of coding to a single basic kind of interaction.

Code Completion for Data Science: The Gamma utilizes
type providers [1], [5], which integrate external data into a
static type system. This enables auto-completion [6], which we
turn into a tool for non-programmers. Similar systems based
on machine learning and domain specific languages [7], [8] do
not guarantee completeness, i.e. it is unclear whether the user
can create all possible scripts. Approaches based on natural
language are effective [9], [10], [11], but hide the underlying
structure and do not help users understand the exact operations
performed. Code completion based on machine learning [12],
[13] also exists for general-purpose programming languages
used by data scientists such as Python [14], but this focuses
on providing assistance to expert programmers.

Notebooks and Business Intelligence Tools: Notebooks such
as Jupyter [15] are widely used data exploration environments
for programmers. The Gamma targets non-experts, but could
be integrated with a multi-language notebook system [16].
Spreadsheets, business intelligence [17], [18] and other visual
data analytics tools [19], [20] do not involve programming,
but require mastering a complex GUI. In contrast, in The
Gamma, all operations can be completed through a single
kind of interaction. Several systems [21], [22], [23] record
interactions with the GUI as a script that can be modified by
the user. Unlike in The Gamma, the generated code does not
guide the user in learning how to use the system.

Easier Programming Tools: Many systems aim to make
programming easier. Victor [24] inspired work on live envi-
ronments environments [25], [26], [27] that help program-
mers understand how code relates to output; exploratory
systems [28], [29] assist with completing open-ended tasks;
and system combining code with visualization also exists for
graph querying [30]. The Gamma is live in that our editor gives
an instant preview of the results. To avoid difficulties with
editing code as text, some systems use structured editors [31],
[32], [33], [34], [35]. Many systems simplify programming
by offering high-level abstractions, e.g. for interactive news
articles [36], statistical analyses [37], data visualization [38],
[39]. The Gamma provides high-level abstractions for data
querying, but supporting other tasks remains future work.

Programming without Writing Code: In programming by
example [40], used for example in spreadsheets [41], [42],
the user gives examples of desired results. In direct manipula-
tion [43], a program is specified by interacting with the output.
This has been used in the visual domain [44], but also for data
querying [45], [46], [47]. Direct manipulation can also support
data exploration by letting users partially edit queries, e.g. by
changing quantifiers as in DataPlay [48].

III. OVERVIEW

The Gamma is a text-based system that allows non-experts to
explore data using iterative prompting – by repeatedly select-
ing an item from an auto-complete list. The study presented in
Section VI confirms that the kind of data exploration shown
in the next section can be successfully done by non-experts.

We introduce The Gamma by walking through a typical
data exploration task. A data journalist from Kent is exploring
travel expense claims by members of the House of Lords
published by the UK government [49]. After importing the
CSV file through a web interface, the environment is initialized
with code that refers to the imported data as expenses using
the type provider for tabular data (Section IV). The journalist
types ‘.’ (dot) to start exploring the data:

1 expenses.

The type provider offers a list of operations that the journalist
can perform. To find House of Lords members from Kent, the
journalist chooses filter data. She is then offered a list of
columns based on the schema of the CSV file and chooses
County is. The completion lists counties in the data set:

1 expenses.’filter data’.’County is’.

The journalist chooses Kent. The Gamma evaluates the code
on-the-fly and shows a preview of results.

1 expenses.’filter data’.’County is’.Kent

The journalist decides to compare travel costs. She finishes
specifying the filtering condition by choosing then and is
offered the same list of querying operations as in the first step.
She selects sort data and is offered a list of sorting options:

1 expenses.’filter data’.’County is’.Kent.then.
2 ’sort data’.

The journalist chooses then and is, again, offered the list of
querying operation. She uses paging to get the top 4 records,
which requires typing 4 as the argument. She then uses the

get series operation to obtain a data series associating travel
expenses with a name, which is automatically visualized:

1 expenses.’filter data’.’County is’.Kent.then
2 .’sort data’.’by Travel Costs descending’.then
3 .paging.take(4).’get series’
4 .’with key Name’.’and value Travel Costs’

The code is not unlike an SQL query, except that the whole
script is constructed using iterative prompting, by repeatedly
selecting one of the offered members. Those represent both
operations, such as sort by and arguments, such as Kent. The
only exception is when the analyst needs to type the number
4 to specify the number of items to take.

IV. SYSTEM DESCRIPTION

A program in The Gamma is a sequence of commands that can
be either a variable declarations or an expression that evaluates
to a value. An expression is a reference to a data source
followed by a chain of member accesses. Each expression has
a type that is used to generate options in auto-completion.
A type defines a list of members that, in turn, have their
own types. The types are not built-in, but are generated by
type providers for individual data sources. The syntax and
semantics of the language has been described elsewhere [50].

A new data source can be supported by implementing a
type provider, which defines a domain specific language for
exploring data of a particular kind. A type provider generates
object types with members (such as paging or Kent) that are
accessed via iterative prompting. We outline type providers
for exploring data cubes (inspired by Syme et al. [1]), tabular
data (formalized elsewhere [52]), and graph databases.

Data Cube Provider: Data cubes are multi-dimensional
arrays of values. For example, the World Bank collects a
range of indicators about many countries each year while
the UK government expenditure records spending for different
government services, over time, with different adjustments:

1 worldbank.byCountry.’United States’.
2 ’Climate Change’.’CO2 emissions (kt)’
3

4 expenditure.byService.Defence.inTermsOf.GDP

The dimensions of the worldbank cube are countries, years
and indicators, whereas the dimensions of expenditure are
government services, years and value type (adjusted, nominal,
per GDP). Figure 2a illustrates how the provider allows users
to slice the data cube. Choosing byCountry.'United States',
restricts the cube to a plane and 'CO2 emissions (kt)'

then gives a series with years as keys and emission data
as values. Similarly, we could first filter the data by a year
or an indicator. The same mechanism is used to select UK
government spending on defence in terms of GDP.

Graph Database Type Provider: Graph databases store
nodes representing entities and relationships between them.
The following example explores a database of Doctor Who
characters and episodes. It retrieves all enemies of the Doctor
that appear in the Day of the Moon episode:

1 drwho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’Day of the Moon’

We start from the Doctor node and then follow two rela-
tionships. We use 'ENEMY OF'.'[any]' to follow links to all
enemies of the Doctor and then specify 'APPEARED IN' to select
only enemies that appear in a specific episode. The query is
illustrated in in Figure 2b. The members are generated from
the data; ENEMY OF and APPEARED IN are labels of relations
and Doctor and Day of the Moon are labels of nodes. The
[any] member defines a placeholder that can be filled with
any node with the specified relationships. The results returned
by the provider is a table of properties of all nodes along the
specified path, which can be further queried and visualized.

Tabular Data Provider: Unlike the graph and data cube
providers, the type provider for tabular data does not just allow
selecting a subset of the data, but it can be used to construct
SQL-like query. Consider the example of querying expense
claims from Section III, which filters and then sorts the data.

When using the provider, the user specifies a sequence of
operations. Members such as 'filter data' or 'sort data'

determine the operation type. Those are followed by members
that specify operation parameters. For example, when filtering
data, we first select the column and then choose a desired
value. Unlike SQL, the provider only allows users to choose
from pre-defined filtering conditions, but this is sufficient for
constructing a range of practical queries.

(a) Exploring World Bank data using the data cube type provider, users choose values from
two dimensions to obtain a data series.

(b) To query graph data, the user specifies a path through the data, possibly with
placeholders to select multiple nodes.

Fig. 2: Type providers for exploring cube and graph data.

Fig. 3: Who does the Dr Who fight most frequently?

V. CASE STUDY

The Gamma aims to simplify programmatic data exploration
while keeping enough expressive power to allow users to
create interesting data explorations. To show what can be
achieved by interactive prompting, we present a case study
that explores a graph database with Dr Who series data.1.

The following constructs a chart (Figure 3) of top Dr Who
villains by the number of episodes in which they appear. This
case is interesting as it combines the graph database provider
for fetching the data with the tabular data provider:

1 drWho.Character.Doctor.’ENEMY OF’.’[any]’
2 .’APPEARED IN’.’[any]’.explore
3 .’group data’.’by Character name’
4 .’count distinct Episode name’.then
5 .’sort data’.’by Episode name descending’.then
6 .paging.take(8).’get series’
7 .’with key Character name’
8 .’and value Episode name’

Line 1 use the graph provider to find all paths linking the
Doctor with any character linked via ENEMY OF, followed by
any episode linked by APPEARED IN. This produces a table that
can be analysed using the tabular data provider by selecting
explore. For each character (the villain) we count the number
of distinct episodes. The result is shown in Figure 3. Despite
performing a sophisticated data analysis that involves a graph
database query, followed by an SQL-like data aggregation, the
code can be constructed using iterative prompting, with the
exception of the numbers in paging.

VI. USER STUDY

Data exploration environments are complex systems that do
not yield to simple controlled experimentation [54]. Rather
than comparing our work with other tools, we evaluate whether
The Gamma can be successfully used by non-programmers.

We performed a between-subjects study to assess whether
non-programmers are able to complete a simple data explo-
ration task using The Gamma. We recruited 13 participants (5
male, 8 female) from a business team of a research institute
working in non-technical roles (project management, commu-
nications). Only one participant (#12) had prior programming
experience. We split participants into 4 groups and asked each
group to complete a different task. We gave participants a brief
overview of The Gamma. The participants then worked for 30

1See: http://gallery.thegamma.net/87/. We also used The Gamma for
projects exploring the UK government expenditure, activities of a research
institute and Olympic medal winners, available at http://turing.thegamma.net
and http://rio2016.thegamma.net

minutes, after which we conducted a semi-structured group
interview. We offered guidance if participants were unable to
progress for more than 5 minutes. The four tasks were:

• Expenditure. Participants were shown the worldbank data
cube and were asked to compare UK spending on ‘Public
order and safety” and “Defence” using another data cube.

• Lords. Participants were shown worldbank and were
asked to use the expenses data table provider to sort
London House of Lords members by their travel costs.

• Worldbank. Participants were given a minimal iterative
prompting demo and a code sample using worldbank.
They were asked to solve another worldbank task.

• Olympics. Participants were given a demo using olympics
that did not involve grouping. They were asked to solve
a problem involving grouping and aggregation.

Our primary hypothesis was that non-programmers will be
able to use The Gamma to explore data. This was tested by
all four tasks for one of the supported data sources.

The tasks expenditure and lords further test if knowledge
can be transferred between different data sources by using one
sources in the introduction and another in the task; worldbank
explores whether users can learn how to use a data source
from just code samples; and lords lets us study to what extent
participants form a correct mental model of the more complex
query language used in the tabular data source.

Can non-programmers explore data with The Gamma? All
participants were able to complete, at least partially, a non-
trivial data exploration task and only half of them required
further guidance. Participants spent 10–25 minutes (average
17) working with The Gamma and 12 out of 13 completed
the task; 6 required assistance, but 3 of those faced the same
issue related to operations taking arguments (discussed later).

A number of participants shared positive comments in the
group interviews. Participant #3 noted that “this is actually
pretty simple to use,” participant #2 said that The Gamma al-
leviated their unease about code: “for somebody who does not
do coding or programming, this does not feel that daunting.”
and participant #5 suggested that the system could be used as
an educational tool for teaching critical thinking with data.

How users learn The Gamma? There is some evidence that
knowledge can be transferred between different data sources.
In expenditure and lords, participants were able to complete
tasks after seeing a demo using another data source. Participant
#2 “found it quite easy to translate what you showed us in the
demo to the new dataset.”. However, the lords task has been
more challenging as it involves a more complex data source.

There is also some evidence that, once a user understands
iterative prompting, they can learn from just code samples. All
three participants were able to complete the worldbank task,
where they were given printed code samples, but no demo
using any data source. When discussing suitable educational
materials for The Gamma, participant #7 also confirmed that
“a video would just be this [i.e. a code sample] anyway”.

How users understand complex query languages? The tab-
ular type provider uses a member then to complete the spec-
ification of a current operation, for example when specifying
a list of aggregation operations. Two participants (#12 and
#13) initially thought that then is used to split a command
over multiple lines, but rejected the idea after experimenting.
Participant #12 then correctly concluded that it “allows us
to chain together the operations” of the query. While iterative
prompting allows users to start exploring new data sources, the
structures exposed by more complex data sources have their
own further design principles that the users need to understand.

What would make The Gamma easier to use? Three partic-
ipants (#11, #12, #13) struggled to complete a task using the
tabular data source, because they attempted to use operation
that takes a numerical parameter and thus violates the iterative
prompting principle. This could be avoided by removing such
operations or by hiding them under an “advanced” tab.

The Gamma uses an ordinary text editor and most partici-
pants had no difficulty navigating around code, making edits
or deleting fragments, which is harder in a structure editor.
Some participants used the text editor effectively, e.g. leverag-
ing copy-and-paste. However, two participants struggled with
indentation and a syntax error in an unrelated command. This
could likely be alleviated through better error reporting.

VII. DISCUSSION

As a text-based programming environment for non-program-
mers, The Gamma examines an unexplored point in the design
space of tools for data exploration. It has been particularly
motivated by the use of data in journalism. The Gamma has the
potential to enable journalists to make factual claims backed
by data more commonplace and enable wider audience to en-
gage with such claims, satisfying the importance criteria [54]
for advancing the state of the art. It also satisfies a number of
design goals important in the data journalism context.

Learning without experts: Our design aims to make The
Gamma suitable for users who cannot dedicate significant
amount of time to learning it in advance and may not have
access to experts, satisfying the empowering new participants
criteria [54]. This is supported in two ways.

First, the iterative prompting principle makes it easy for
users to start experimenting. The user needs to select an initial
data source and then repeatedly choose an item from a list
of choices. This is easier to use than a command line or a
REPL (read-eval-print-loop) interface, because it follows the
recognition over recall usability heuristic. The users are not
required to recall and type a command. They merely need to
select one from a list of options.

Second, the resulting code serves as a trace of how the
analysis was created. It provides the user with all information
that they need to recreate the program, not just by copying it,
but also by using iterative prompting. Such design has been
called design for percolation [55] and it supports learnability.
In Excel, studied by Sarkar [55], users learn new features when
their usage is apparent in a spreadsheet, e.g. different functions

in formulas, but learning how to use a wizard for creating
charts is hard because the operation does not leave a full trace
in the spreadsheet.

Lowering barriers to entry: Data exploration has a cer-
tain irreducible essential complexity [56]. To make a system
usable, this complexity needs to be carefully stratified. The
Gamma uses a two level structure. The first level consists of
the language itself with the iterative prompting mechanism.
The second level consists of the individual members generated
by a type provider. This can be seen as a domain specific
language, embedded in The Gamma language. Although the
complexity of individual domain specific languages differs, the
user can always start exploring through iterative prompting,
even when faced with an unfamiliar data source.

In tackling complexity, The Gamma satisfies two criteria
proposed by Olsen [54]: generality in that it can be used
uniformly with a wide range of data sources, and expressive
leverage in that it factors out common aspects of different
data queries into the core language (first level) and leaves the
specifics of each data source to the second level.

Correctness and completeness: An important characteristic
of our design is that the iterative prompting mechanism is both
correct and complete with respect to possible data exploration
scripts. The two properties are a consequence of the fact
that a program is a formed by a chain of operations and
that the auto-completion leverages a static type system. When
invoking iterative prompting at the end of a well-typed script,
a selected option, which is a valid object member, is added to
the end of the script, resulting in another well-typed script.
This distinguishes our system from auto-completion based
on machine learning, which may offer members not valid
in a given context. Auto-completion lists offered via iterative
prompting contain all available members and so the user can
construct all possible scripts. Two exceptions to completeness
in our current design are the let binding and specifying
numerical parameters as in take(5).

VIII. CONCLUSIONS

Exploring data in a programming environment that makes the
full source code available increases transparency, reproducibil-
ity and empowers users to ask critical questions about the
data analysis. But can we make those features accessible to
non-programmers? In this paper, we presented The Gamma,
a simple data exploration environment for non-programmers
that answers this question in the affirmative.

The Gamma is based on a single interaction principle,
iterative prompting. It can be used to complete a range of
data exploration tasks using tabular data, data cubes and graph
databases. The design lowers the barrier to entry for program-
matic data exploration and makes it easy to learn the system
independently through examples and by experimentation. We
implemented The Gamma, make it available as open source
and conducted a user study, which lets us conclude that The
Gamma can be used by non-programmers to construct non-
trivial data exploration scripts.

ACKNOWLEDGMENTS

We thank to May Yong and Nour Boulahcen for their
contributions to The Gamma type providers. The author is also
grateful to Don Syme, James Geddes, Jonathan Edwards and
Roly Perera for numerous discussions about data science tool-
ing and type providers, as well as Luke Church for discussions
about human-computer interaction and Clemens Klokmose for
numerous suggestions on framing of this paper. Anonymous
reviewers of this and earlier versions of the paper also provided
valuable feedback. This work was partly supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1
and by a Google Digital News Initiative grant.

REFERENCES

[1] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek,
“Themes in information-rich functional programming for internet-scale
data sources,” in Proceedings of Workshop on Data Driven Functional
Programming. ACM, 2013, pp. 1–4.

[2] B. A. Myers, A. J. Ko, and M. M. Burnett, “Invited research
overview: end-user programming,” in Extended Abstracts Proceedings
of the 2006 Conference on Human Factors in Computing Systems,
CHI ’06. ACM, 2006, pp. 75–80. [Online]. Available: https:
//doi.org/10.1145/1125451.1125472

[3] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

[4] J. Gray, L. Chambers, and L. Bounegru, The data journalism handbook:
how journalists can use data to improve the news. O’Reilly, 2012.

[5] T. Petricek, G. Guerra, and D. Syme, “Types from data: Making
structured data first-class citizens in F#,” in Proceedings of Conference
on Programming Language Design and Implementation, ser. PLDI ’16.
ACM, 2016, pp. 477–490.

[6] G. E. Kaiser and P. H. Feiler, “An architecture for intelligent assistance
in software development,” in Proceedings of the 9th International
Conference on Software Engineering, ser. ICSE ’87. Washington, DC,
USA: IEEE Computer Society Press, 1987, p. 180–188.

[7] J. Heer, J. M. Hellerstein, and S. Kandel, “Predictive interaction for data
transformation,” in CIDR, 2015.

[8] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts,”
in Proceedings of the 24th annual ACM symposium on User interface
software and technology, 2011, pp. 65–74.

[9] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X.
Chang, “Eviza: A natural language interface for visual analysis,” in
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16. ACM, 2016, pp. 365–377. [Online].
Available: https://doi.org/10.1145/2984511.2984588

[10] X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology, UIST ’16. ACM, 2016, pp. 247–258.

[11] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris:
A conversational agent for complex tasks,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018. ACM, 2018, p. 473.

[12] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples
to improve code completion systems,” in Proceedings of the 7th joint
meeting of the European Software Engineering Conference and the
ACM International Symposium on Foundations of Software Engineering.
ACM, 2009.

[13] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion
with statistical language models,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14.
ACM, 2014, pp. 419–428. [Online]. Available: https://doi.org/10.1145/
2594291.2594321

[14] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia:
Ai-assisted code completion system,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’19. ACM, 2019, pp. 2727–2735. [Online]. Available:
https://doi.org/10.1145/3292500.3330699

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows,” in 20th International Conference on Electronic Publishing,
F. Loizides and B. Schmidt, Eds., 2016, pp. 87–90.

[16] T. Petricek, J. Geddes, and C. A. Sutton, “Wrattler: Reproducible, live
and polyglot notebooks,” in 10th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2018, London, UK, July 11-12, 2018.,
M. Herschel, Ed., 2018.

[17] R. Wesley, M. Eldridge, and P. T. Terlecki, “An analytic data engine
for visualization in tableau,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. ACM, 2011, pp.
1185–1194.

[18] Microsoft Corporation. (2020) Microsoft power bi. [Online]. Available:
https://powerbi.microsoft.com/en-us/

[19] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas, “Interactive data analysis: the control project,”
Computer, vol. 32, no. 8, pp. 51–59, 8 1999.

[20] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska,
“Vizdom: Interactive analytics through pen and touch,” Proceedings of
the VLDB Endownment, vol. 8, no. 12, pp. 2024–2027, Aug. 2015.

[21] V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data
cleaning system,” in VLDB, vol. 1, 2001, pp. 381–390.

[22] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2011, pp. 3363–3372.

[23] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization design
environment,” in Computer Graphics Forum, vol. 33, no. 3, 2014, pp.
351–360.

[24] B. Victor. (2012) Inventing on principle. [Online]. Available:
http://worrydream.com/InventingOnPrinciple

[25] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory
and live, programming and coding,” The Art, Science, and Engineering
of Programming, vol. 3, no. 1, 2019.

[26] J. Kubelka, R. Robbes, and A. Bergel, “The road to live programming:
Insights from the practice,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: ACM, 2018, pp. 1090–1101.

[27] C. Granger. (2012) Lighttable: A new IDE con-
cept. [Online]. Available: http://www.chris-granger.com/2012/04/12/
light-table-a-new-ide-concept/

[28] M. B. Kery, A. Horvath, and B. Myers, “Variolite: Supporting ex-
ploratory programming by data scientists,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM,
2017, p. 1265–1276.

[29] M. B. Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), A. Henley, P. Rogers, and A. Sarma, Eds. IEEE,
2017, pp. 25–29.

[30] E. Adar, “GUESS: a language and interface for graph exploration,” in
Proceedings of the 2006 Conference on Human Factors in Computing
Systems, CHI 2006. ACM, 2006, pp. 791–800. [Online]. Available:
https://doi.org/10.1145/1124772.1124889

[31] G. Szwillus and L. Neal, Structure-based editors and environments.
Academic Press, Inc., 1996.

[32] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer, “Live functional
programming with typed holes,” PACMPL, vol. 3, no. POPL, 2019.

[33] E. Lotem and Y. Chuchem. (2018) Lamdu project. [Online]. Available:
https://github.com/lamdu/lamdu

[34] J. Edwards, “Subtext: uncovering the simplicity of programming,” ACM
SIGPLAN Notices, vol. 40, no. 10, pp. 505–518, 2005.

[35] ——. (2018, 6) Direct programming. [Online]. Available: https:
//vimeo.com/274771188

[36] M. Conlen and J. Heer, “Idyll: A markup language for authoring
and publishing interactive articles on the web,” in The 31st
Annual ACM Symposium on User Interface Software and Technology,
UIST ’18. ACM, 2018, pp. 977–989. [Online]. Available: https:
//doi.org/10.1145/3242587.3242600

[37] E. Jun, M. Daum, J. Roesch, S. Chasins, E. Berger, R. Just, and
K. Reinecke, “Tea: A high-level language and runtime system for
automating statistical analysis,” in Proceedings of the 32nd Annual ACM
UIST Symposium 2019. ACM, 2019, pp. 591–603.

[38] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative
interaction design for data visualization,” in The 27th Annual
ACM Symposium on User Interface Software and Technology,
UIST ’14. ACM, 2014, pp. 669–678. [Online]. Available: https:
//doi.org/10.1145/2642918.2647360

[39] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE transactions on visual-
ization and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[40] H. Lieberman, Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[41] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–
105, 2012.

[42] V. Le and S. Gulwani, “Flashextract: a framework for data extraction
by examples,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014, pp. 542–
553.

[43] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation
interfaces,” Human–Computer Interaction, vol. 1, no. 4, pp. 311–338,
1985.

[44] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-sketch: Output-
directed programming for SVG,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
UIST ’19. ACM, 2019, pp. 281–292. [Online]. Available: https:
//doi.org/10.1145/3332165.3347925

[45] B. Shneiderman, C. Williamson, and C. Ahlberg, “Dynamic queries:
Database searching by direct manipulation,” in Conference on Human
Factors in Computing Systems, CHI ’92. ACM, 1992, pp. 669–670.
[Online]. Available: https://doi.org/10.1145/142750.143082

[46] I. Bretan, R. Nilsson, and K. S. Hammarstrom, “V: a visual query
language for a multimodal environment,” in Conference on Human
Factors in Computing Systems, CHI ’94, C. Plaisant, Ed. ACM,
1994, pp. 145–147. [Online]. Available: https://doi.org/10.1145/259963.
260174

[47] M. Derthick, J. Kolojejchick, and S. F. Roth, “An interactive
visual query environment for exploring data,” in Proceedings of
the 10th Annual ACM Symposium on User Interface Software and
Technology, UIST ’97. ACM, 1997, pp. 189–198. [Online]. Available:
https://doi.org/10.1145/263407.263545

[48] A. Abouzied, J. M. Hellerstein, and A. Silberschatz, “Dataplay: inter-
active tweaking and example-driven correction of graphical database
queries,” in The 25th Annual ACM Symposium on User Interface
Software and Technology, UIST ’12. ACM, 2012, pp. 207–218.

[49] UK Parliment. (2021) Members’ allowances and expenses.
[Online]. Available: https://www.parliament.uk/mps-lords-and-offices/
members-allowances/house-of-lords/holallowances/

[50] T. Petricek, “Foundations of a live data exploration environment,” Art
Sci. Eng. Program., vol. 4, no. 3, p. 8, 2020. [Online]. Available:
https://doi.org/10.22152/programming-journal.org/2020/4/8

[51] Microsoft Corporation. (2021) Monaco editor. [Online]. Available:
https://microsoft.github.io/monaco-editor/

[52] T. Petricek, “Data exploration through dot-driven development,” in 31st
European Conference on Object-Oriented Programming, 2017.

[53] G. Myre. (2021) If michael phelps were a country, where would
his gold medal tally rank? [Online]. Available: https://www.npr.org/
sections/thetorch/2016/08/14/489832779/

[54] D. R. O. Jr., “Evaluating user interface systems research,” in
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07. ACM, 2007, pp. 251–258.
[Online]. Available: https://doi.org/10.1145/1294211.1294256

[55] A. Sarkar and A. D. Gordon, “How do people learn to use spreadsheets?
(work in progress),” in Proceedings of the 29th Annual Conference of
the Psychology of Programming Interest Group (PPIG 2018), Sep. 2018,
pp. 28–35.

[56] J. Brooks, F.P., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10 –19, april 1987.

[57] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in Companion to the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’09. ACM, 2009, pp. 957–964.

Chapter 11

AI Assistants: A framework for semi-automated data
wrangling

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz, and Christopher K. I. Williams. 2023. AI Assistants: A Framework for Semi-AutomatedData Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295–9306. https://doi.org/10.
1109/TKDE.2022.3222538

161

https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1109/TKDE.2022.3222538

JOURNAL 1

AI Assistants: A Framework for
Semi-Automated Data Wrangling
Tomas Petricek, Gerrit J.J. van den Burg, Alfredo Nazábal, Taha Ceritli,

Ernesto Jiménez-Ruiz, Christopher K. I. Williams

Abstract—Data wrangling tasks such as obtaining and linking data from various sources, transforming data formats, and correcting
erroneous records, can constitute up to 80% of typical data engineering work. Despite the rise of machine learning and artificial
intelligence, data wrangling remains a tedious and manual task. We introduce AI assistants, a class of semi-automatic interactive tools
to streamline data wrangling. An AI assistant guides the analyst through a specific data wrangling task by recommending a suitable
data transformation that respects the constraints obtained through interaction with the analyst.

We formally define the structure of AI assistants and describe how existing tools that treat data cleaning as an optimization
problem fit the definition. We implement AI assistants for four common data wrangling tasks and make AI assistants easily accessible
to data analysts in an open-source notebook environment for data science, by leveraging the common structure they follow. We
evaluate our AI assistants both quantitatively and qualitatively through three example scenarios. We show that the unified and
interactive design makes it easy to perform tasks that would be difficult to do manually or with a fully automatic tool.

Index Terms—Data Wrangling, Data Cleaning, Human-in-the-Loop

✦

1 INTRODUCTION

WHILE most research in data science focuses on novel
methods and clever algorithms, the practice is domi-

nated by the realities of working with messy data. Surveys
[1], [2] indicate that up to 80% of data engineering is spent
on data wrangling, a tedious process of transforming data
into a format suitable for analysis, which includes parsing,
making sense of encodings, merging datasets, and correct-
ing erroneous records. Data wrangling prevents both orga-
nizations and individuals from applying machine learning
and represents an enormous cost, both in terms of wasted
time and in terms of missed opportunities.

Despite attempts to address this issue [3], [4], data wran-
gling remains hard to automate, because it often involves
special cases that require human insight. An automatic
tool can easily confuse interesting outliers for uninteresting
noise in cases where a human would immediately spot the
difference. This makes incorporating human understanding
into the process crucial. A major advance in the practice of
data wrangling therefore requires semi-automated tools that
integrate automatic methods with human insight, allow the
analyst to review cleaning operations before applying them,
and follow a unified interface that makes it easy to use a
wide range of tools during data wrangling.

• T. Petricek (tomas@tomasp.net), Charles University, Prague, Czechia
(work done while at University of Kent and The Alan Turing Institute)

• G.J.J. van den Burg (gertjanvandenburg@gmail.com), Amazon, UK
(work done prior to joining Amazon, in The Alan Turing Institute)

• A. Nazabal (alfredonazabal@gmail.com)
Amazon Development Centre Scotland, Edinburgh
(work done prior to joining Amazon, in The Alan Turing Institute).

• T. Ceritli (taha.ceritli@eng.ox.ac.uk), University of Oxford, UK
(work done in University of Edinburgh and The Alan Turing Institute)

• E. Jiménez-Ruiz (ernesto.jimenez-ruiz@city.ac.uk)
City, University of London, UK and University of Oslo, Norway

• C. K. I. Williams (ckiw@inf.ed.ac.uk)
University of Edinburgh and The Alan Turing Institute, UK

1.1 Background

Data wrangling is most often done manually using a com-
bination of programmatic and graphical tools. Jupyter and
RStudio are popular environments used for programmatic
data cleaning. They are used alongside libraries that im-
plement specific functionality such as parsing CSV files or
merging datasets [5], [6] and general data transformation
functions provided, e.g., by Pandas [7] and Tidyverse [8].

Trifacta [9] and OpenRefine [10] are complete graph-
ical data wrangling systems that consist of myriad tools
for importing and transforming data, which are accessible
through different user interfaces or through a scriptable
programmatic interface. Finally, spreadsheet applications
such as Excel and business intelligence tools like Tableau
[11] are often used for manual data editing, reshaping,
and especially visualization [12]. The above general-purpose
systems are frequently complemented by ad-hoc tools such
as Tabula [13], which extracts tables from PDF documents.

1.1.1 Semi-automatic data wrangling

Some of the most practical tools along the entire data wran-
gling pipeline partially automate a specific tedious data
wrangling task. To merge datasets, Trifacta [9] and datadiff
[6] find corresponding columns using machine learning.
To transform textual data and tables, Excel [14] employs
programming-by-example to parse semistructured data,
LearnPADS [15] automatically generates programmatic
data processing routines, and many tools exist to semi-
automatically detect duplicate records in databases [16].

A common theme in data wrangling tools that utilize
machine learning, including those listed above, is that they
allow the analyst to review and influence the results. The
interaction between a human and a computer in such data
wrangling systems follows a number of common patterns:

JOURNAL 2

• Onetime interaction. A tool makes a best guess, but
allows the analyst to manually edit the proposed data
transformation. Examples include LearnPADS [15] and
dataset merging in Trifacta [9] and datadiff [6].

• Live previews. Environments like Jupyter, Trifacta [9],
and The Gamma [17] provide live previews, allowing
the analyst to check the results and tweak parameters
of the operation they are performing before moving on.

• Iterative. A tool re-runs inference after each interaction
with a human to refine the result. For example, in
Predictive Interaction [18] the analyst repeatedly selects
examples to construct a data transformation.

• Question-based. A system repeatedly asks the human
questions about data and uses the answers to infer
and refine a general data model. Examples include data
repair tools such as UGuide [19], [20].

The interaction pattern that combines human inputs and
automatic inference is also known as mixed-initiative inter-
faces [21], [22] in the context of graphical user interfaces,
and as human-in-the-loop data analytics (HILDA) [22], [23]
in the context of data science. However, both of these are
general patterns, rather than specific technical frameworks.

1.1.2 Issues and limitations
The emerging class of semi-automatic data wrangling tools
have the potential to dramatically simplify data wrangling
because they combine the automation and scalability of
machine learning with crucial human insight. However, this
development has been hindered by two main issues.

First, semi-automatic data wrangling tools lack a com-
mon structure. Notions such as mixed-initiative user in-
terfaces and human-in-the-loop are too general and do
not provide a specific technological framework that a tool
implementation could follow. Moreover, many tools only
exist in one specific environment or programming language,
forcing the analyst to repeatedly switch between tools. They
may, for example, need to export data from Trifacta to a CSV
file, run a particular R or Python script and then import data
back. This is not without risk, as intermediate data formats
may accidentally corrupt data.

Second, the way analysts interact with such tools can
vary significantly. Consequently, users have to learn how to
interact with each new tool using whatever mechanism it
supports, be it a graphical user interface, a program library,
or a command-line script. Moreover, most semi-automatic
data wrangling tools accept only limited forms of human
input. The onetime interaction pattern of interaction prevails
and only a few systems [18], [24] follow the flexible iterative
pattern. Even then, the way of specifying feedback in such
systems is often specialized and tied to the problem domain.

1.2 Contributions

We present the notion of an AI assistant, a common structure
for building semi-automatic data wrangling tools that incor-
porate human feedback. AI assistants capture the iterative
pattern of interaction where a human user repeatedly pro-
vides insights about the problem and a computer performs
automatic inference. The design addresses the issues with
semi-automatic data wrangling tools described above.

First, the AI assistant framework allows for a wide range
of semi-automatic data wrangling tools that can integrate
human feedback. For analysts, this makes using AI assis-
tants easy as they can complete a variety of data wrangling
tasks through a uniform user interface. For tool developers,
this makes building AI assistants easier, because any AI as-
sistant can be readily used from JupyterLab and potentially
other data wrangling systems.

Second, the notion of an AI assistant defines a simple
uniform mechanism for iteratively providing feedback to
the assistants. An AI assistant makes an initial best guess
and then it repeatedly offers the analyst a list of options that
they can choose from in order to guide the next iteration of
the automatic process.

The remainder of this paper is structured as follows:
• We introduce AI assistants by example in Section 2,

looking at how the datadiff AI assistant simplifies
merging data from inconsistent datasets.

• We define the structure of AI assistants formally in
Section 3 and show how tools solving an optimization
problem fit the definition.

• We present four AI assistants in Section 4 (for parsing,
merging, type inference, and semantic type prediction),
that each restructure an existing non-interactive tool as
an interactive AI assistant.

• We evaluate our approach in Section 5 qualitatively,
by discussing three scenarios where automatic tools
would fail, and quantitatively, by evaluating how many
interactions are needed to complete a wrangling task.

While we may not entirely eliminate the 80% of time data
scientists spend on data wrangling, our framework provides
a pathway to the future where data analysts leverage the
advances in AI for the most time-consuming aspect of their
job. The four AI assistants we develop illustrate the benefits
that a rich ecosystem of AI assistants would provide.

2 MOTIVATION

To give an overview of how AI assistants work, we discuss
the data wrangling task of merging multiple incompatible
datasets, using the UK broadband quality data [25], pub-
lished by the UK communications regulator Ofcom.

The regulator collects data annually, but the formats
of the files are inconsistent over the years. The order of
columns changes, some columns are renamed, and new
columns are added. We take the 2014 dataset and select six
interesting columns (latency, download and upload speed,
time needed to load a sample page, country, and whether
the observation is from an urban or a rural area). We then
want to find corresponding columns in the 2015 dataset.

The 2015 dataset has 66 different columns so finding cor-
responding columns manually would be tedious. Instead,
we can use the automatic datadiff tool [6], which matches
columns by analyzing the distributions of the data in each
column. Datadiff generates a list of patches that reconcile the
structure of the two datasets. A patch describes a single data
transformation to, for example, reorder columns or recode
a categorical column according to an inferred mapping.
Datadiff is available as an R function that takes two datasets
and several hyperparameters that affect the likelihood of

JOURNAL 3

Fig. 1. Using the datadiff AI assistant in JupyterLab to semi-automati-
cally merge data from two sources, parsed by an earlier R script.

the different types of patches. Datadiff correctly matches
five out of six columns, but it incorrectly attempts to
match a column representing Local-loop unbundling (LLU)
to a column representing UK countries. This happens as
datadiff allows the recoding of categorical columns, and
seeks to match them based on the relative frequencies in
the two columns. Consequently, the inferred transformation
includes a patch to recode the Cable, LLU, and Non-LLU
values to Scotland, Wales, and England. To correct this,
we could either manually edit the resulting list of patches,
or tweak the likelihood of the recode patch. Such parameter
tuning is typical for real-world data wrangling, but finding
the values that give the desired result can be hard.

The semi-automatic datadiff AI assistant presented in
this paper enables the analyst to guide the inference process
by specifying human insights in the form of constraints.
The AI assistant first suggests an initial set of patches with
one incorrect mapping. After the analyst chooses one of the
offered constraints, shown in Figure 1, datadiff runs again
and presents a new solution that respects the specified con-
straints until, after two more simple interactions, it reaches
the correct solution (see Section 5.1.1 for details).

The example illustrates the interaction pattern at the core
of AI assistants. At each step, the assistant analyzes the data
and recommends the best data transformation. It previews
the transformed data and offers a range of constraints that
may be sorted by their estimated fit. The analyst can then
accept the result or choose another constraint to refine the
outcome. The behaviour is controlled through comprehen-
sible constraints rather than opaque numerical parameters.

As discussed in Appendix D (see supplemental files), we
make AI assistants available in JupyterLab, which allows an-
alysts to combine text and equations with code and outputs
such as charts. We introduce a new cell type that leverages
the common structure of AI assistants to provide a unified
user interface (see Figure 1) for accessing any AI assistant.

3 THEORY OF AI ASSISTANTS

The notion of an AI assistant formally captures a pattern of
interaction between a semi-automatic data wrangling tool
and a data analyst. The precise definition distinguishes AI
assistants from more general notions such as human-in-the-
loop data analytics, and it facilitates the development of
concrete AI assistants discussed in Section 4.

3.1 Formal model
Our definition uses the algebraic approach [26] and presents
AI assistants as a formal mathematical entity that consists
of several operations, modeled as mathematical functions
between different sets. For reference, a glossary of symbols
used in the paper can be found in Table 5 (supplement).

Every AI assistant is defined by three operations that
work with expressions e, past human interactions H , input
data X , and output data Y. While AI assistants share a
common structure, the language of expressions e that an
assistant produces, the notion of human interactions H , and
the notion of X and Y can differ between assistants.

We refer to e as expressions, following the programming
research tradition, but expressions e can also be thought of
as data cleaning scripts. As we will see from our concrete
examples, the input data X is typically one or more data
tables and the output data Y is typically a single table, often
annotated with meta-data such as column types.

Definition 3.1 (AI assistant). Given expressions e, input
data X , output data Y , and human interactions H , an
AI assistant (H0, f, best , choices) is a tuple where H0 is a
set denoting an empty human interaction and f, best and
choices are operations such that:

• f(e,X) = Y
• bestX(H) = e
• choicesX(H) = (H1, H2, H3, . . . ,Hn).

The operation f transforms an input dataset X into an out-
put dataset Y according to the expression e. The operation
bestX recommends the best expression for a given input
dataset X , respecting past human interactions H . Finally,
the operation choicesX generates a sequence of options
H1, H2, H3, . . . ,Hn that the analyst can choose from (for
instance through the user interface illustrated in Figure 1).
When interacting with an assistant, the selected human
interaction H is passed back to bestX in order to refine the
recommended expression. Note that the sequence of human
interactions given by choicesX may be sorted, starting with
the one deemed the most likely. To initialize this process, the
AI assistant defines an empty human interaction H0.

The interesting AI logic can be implemented in either
the bestX operation, the choicesX operation, or both. The
f operation is typically straightforward. It merely executes
the inferred cleaning script. Both bestX and choicesX are pa-
rameterized by input data X , which could be the actual in-
put or a smaller representative subset, such as coresets [27],
to make working with the assistant more efficient.

The logic of working with AI assistants is illustrated in
Figure 2. When using the assistant, we start with the empty
interaction H0. We then iterate until the human analyst
accepts a proposed data transformation. In each iteration,
we first invoke bestX(H) to get the best expression e∗ re-
specting the current human insights captured byH . We then
invoke f(e∗, X) to transform the input data X according to
e∗ and obtain a transformed output dataset Y . After seeing
a preview of Y , the analyst can either accept or reject the
recommended expression e∗. In the latter case, we generate
a list of possible human interactions H1, H2, H3, . . . ,Hn

using choicesX(H) and ask the analyst to pick an option Hi

(where i ∈ {1, . . . , n}). We use this choice as a new human
interaction H and call the AI assistant again.

JOURNAL 4

H = H0 e∗ = bestX(H) Y = f(e∗, X)

Display
preview of Y

script = e∗

data = f(e∗, X)

H1, H2, H3, . . . ,Hn

= choicesX(H)
Choose the next

interaction H = Hi

accept

refine

Fig. 2. Flowchart illustrating the interaction be-
tween an analyst and an AI assistant. Steps
drawn as rounded rectangles correspond to
user interactions with the system.

Having a unified structure for AI assistants means that
we can separate the development of individual AI assistants
from the development of tools that use them. Our Jupyter-
Lab implementation facilitates access to any AI assistant that
adheres to the interface captured by Definition 3.1.

3.2 Example

To provide intuition behind the operations, we return to the
semi-automatic datadiff AI assistant introduced in Section 2
and presented in full in Section 4.1. In case of datadiff, an
expression e is a list of patches. Input dataX is a pair of data
tables comprising a reference dataset and an input dataset.
The output data Y is the input dataset, transformed to the
format of the reference dataset. Finally, human interactions
H are lists of constraints that restrict what expressions
are permissible. An example constraint, discussed earlier,
prevents the matching of particular columns.

The most interesting aspect of the assistant is the bestX
operation. It takes a sample input X together with a trace
of human interactions H , which is a list of constraints. It
then finds the best way to match the columns from the two
datasets, utilizing the algorithm from the original datad-
iff [6], but respecting the constraints. The result is a list of
patches, which is returned as an expression e. The choicesX
operation generates a list of choices H1, H2, H3, . . . ,Hn.
An individual choice is obtained by taking the constraints
specified earlier and adding one additional constraint that
restricts some aspect of the recommended script, e.g., recod-
ing of a column that was recommended in the expression e.
Finally, f applies the list of patches to the input data.

In datadiff, the clever algorithmics are done in the
bestX operation, while choicesX is simpler. It generates
constraints in a simple hard-coded way, although a more
elaborate AI assistant could rank these constraints.

3.3 Optimization perspective

Our definition of an AI assistant is purposefully general,
but the way most AI assistants recommend cleaning scripts
is based on the optimization of an objective function. They
attempt to find the best cleaning script for a given problem
from a set of possible cleaning scripts. The best script is de-
termined by an objective function Q that scores expressions
based on how well they clean the specified input data.

As before, we write e for expressions (cleaning scripts)
that an AI assistant recommends and H for human in-
teractions. The operation bestX(H) solves an optimization
problem based on an objective function QH to identify the
best expression e∗ from a set EH of possible expressions.
Note that both QH and EH are parameterized by human

interactions, meaning that interaction with the tool can af-
fect both the optimization objective and the set of permitted
expressions. More formally, given QH and EH where:

– QH(X, e) is an objective function that assigns a score
to an expression e, applied to input data X , taking into
account human interaction H ;

– EH is a set of permitted expressions with respect to
human interaction H ,

we define bestX as solving an optimization problem:

bestX(H) = argmaxe∈EH
QH(X, e)

The objective function Q needs to be defined individually
for each AI assistant. It typically uses a measure of how
clean the data is after applying the expression e. For datadiff,
Q is computed as a sum of distance measures between the
empirical distributions of the corresponding columns [6].
The optimization based on Q is also implemented individu-
ally for each AI assistant and is discussed in the next section.

The fact that both EH and QH are parameterized by H
makes the definition more flexible. One human interaction
can entirely prevent the assistant from generating certain
expressions (by removing them from EH), while another
can make a particular expression less desirable (by decreas-
ing the score assigned to it by QH). For example, human
interactions in datadiff restrict the set of allowed expressions
EH , but do not affect the objective function QH .

4 PRACTICAL AI ASSISTANTS

In this section, we show how to turn four existing non-
interactive data wrangling tools into interactive AI assis-
tants. An example of a newly developed assistant for outlier
detection is discussed in Appendix C (supplemental files).

4.1 datadiff: Merging mismatched data tables
We start by revisiting the datadiff AI assistant. The original
R package [6] implements a function that returns the in-
ferred best list of patches. We modify the package to support
restricting the optimization using constraints specified by
the analyst, and use it as the basis for an interactive AI
assistant. The following formal model explains how the AI
assistant uses the underlying optimization and generates
choices that the analyst can use to control the assistant.

Formal definition of datadiff. The input data for the assistant
is a pair of data tables Ti, Tr representing the input and ref-
erence datasets, respectively. The expression e is a sequence
of patches and human interactions H are lists of constraints
that restrict what patches can be generated. Patches P and
constraints c are defined as:

P = recode(k, [v1 7→ v′1, . . .]) | linear(k, a, b) |
delete(k) | insert(k) | permute(π)

c = nomatch(k, l) | notransfrom(k) |match(k, l)

The recode(k, [v1 7→ v′1, . . .]) patch transforms categorical
values in a column k by replacing old values vi with new
values v′i, linear(k, a, b) transforms values v in a numerical
column k using a linear transformation v · a + b, insert(k)
inserts a new column at an index k, delete(k) removes a
column at an index k, and permute(π) reorders columns
according to a permutation π.

JOURNAL 5

Interacting with the assistant results in a list of con-
straints: notransform(k) prevents recoding or linear transfor-
mation in a column k, while nomatch(k, l) and match(k, l)
prevent or enforce matching of columns k from the input
dataset to the column l in the reference dataset.

The operations of datadiff follow the optimization-based
framework where bestX(H) finds a list of patches from the
set EH that maximizes the objective function Q:

bestX(H) = argmaxe∈EH
Q(X, e) where

EH = {(P1, . . . , PL) ∈ E | ∀i ∈ 1 . . . L. validH(Pi)}
The objective function, discussed below, is not affected by
human interaction, but human interactions do limit the set
of allowed expression EH . This is captured by the validH

predicate defined in Appendix A (see supplemental files).
Briefly, a list of patches P is valid if it does not recode
or rescale any column specified in norecode and if the
permutation given in permute(π) is compatible with the
match and nomatch constraints.

The choicesX operation, also given in Appendix A,
offers constraints based on the best patch set obtained from
calling bestX . Each human interaction adds one additional
constraint to the current set of constraintsH . The constraints
allow the analyst to override some aspect of the generated
patch. For any recode or linear patch, we offer the notransform
constraint to block the transformation. For any matched
columns, we offer nomatch, and for any columns that were
not automatically matched we offer the match constraint to
manually match them. In the example discussed above, the
assistant recommends an incorrect recode patch. The first
interaction offered by choicesX is to add the notransform
constraint to prevent this matching.

Objective function optimization. We use the same objective
function Q as non-interactive datadiff [6]. Given the input
and reference datasets and a set of patches to apply, the
objective function sums the distances between the distri-
butions of the matched columns, using the Kolmogorov-
Smirnov statistic for numerical columns and the total varia-
tion (TV) statistic for categorical columns.

The optimization algorithm employed in datadiff first
computes the optimal patch for all pairs of columns produc-
ing a cost matrix. The optimal matching is then determined
by running the Hungarian algorithm [28]. Our modification
incorporates the constraints specified by the user by not
applying recoding where prevented by a constraint and
by setting the cost of columns that should or should not
be matched to zero and infinity, respectively. Details and
performance considerations can be found in Appendix B.

Example of using datadiff. Suppose we have two data tables
and we want to transform the input table Ti on the left to
match the format of the reference table Tr on the right. The
following shows the header and the first three rows:

City, Name, Count Name, City
Cardiff, Alice, 1 Joe, London
Cardiff, Bob, na Jane, Edinburgh
Edinburgh, Bill, 2 Jim, London

The original datadiff recommends three patches: delete(3),
permute(2, 1) and recode(2, [“Cardiff” 7→ “London”]).

Datadiff correctly infers that we need to drop the Count
column and that the order of Name and City has been
switched. It erroneously infers that the encoding of a cat-
egorical column City has been changed. This would be
useful for pairs of values like “true”, “false” and “yes”,
“no”, but it is incorrect in the case of cities.

Using the interactive datadiff, the analysts can specify
the notransform(2) constraint, which will prevent datadiff
from generating the recode patch for the column 2. The
interactive AI assistant makes such an intervention easy,
because it offers the constraint via the choicesX operation
and the analyst can simply select it from a drop-down menu.

4.2 CleverCSV: Parsing tabular data files
While parsing CSV files in the standard format [29] is easy,
parsing a file with non-standard column separators and
other formatting parameters often requires human insight.
CleverCSV [5] is an automatic tool that uses a data consis-
tency measure to determine formatting parameters, called a
“dialect”, consisting of the delimiter (e.g., ,), quote (e.g., ")
and escape characters (e.g., \). We adapt CleverCSV into an
interactive AI assistant that allows the analyst to guide the
tool in case the automatic detection fails.

Formal definition of CleverCSV. CleverCSV is an optimi-
zation-based assistant that takes a single string, repre-
senting the CSV file, as the input data X . The objective
function Q(X, e) is defined by the data consistency mea-
sure discussed below, expressions e represent dialects, and
Y = f(e,X) denotes the result of parsing the file using a
given dialect. Human interactions place constraints on the
characters that are considered for each parameter and can
either fix a dialect parameter to a specific value or block a
character from being considered:

e = (is_delimiter(d), is_quote(q), is_escape(a))
c = fix_delimiter(d) | fix_quote(q) | fix_escape(a)
| not_delimiter(d) | not_quote(q) | not_escape(a)

The operations that define the CleverCSV AI assistant fol-
low the same structure as those of datadiff and are shown in
Appendix A (see supplemental files). The bestX operation
optimizes the objective function Q(X, e) over a set EH , con-
sisting of dialects compatible with the current constraints
H . The choicesX(H) operation can take advantage of the
consistency score Q(X, e) computed for each dialect under
consideration to sort the suggested constraints.

Objective function optimization. The objective function QH

for the AI assistant does not depend on user interactions and
uses the consistency measure of non-interactive CleverCSV
[5]. The measure is calculated by parsing the input file using
a potential dialect and taking the product of two scores: the
“pattern score” that captures how regular the structure of
the parsed data is (i.e., does the resulting table have the
same number of cells in each row?), and the “type score”
that captures the proportion of cells that have an identifiable
data type. The optimization involves iterating over each
possible dialect allowed by the constraints H , and identify-
ing the one that maximizes the objective function. Further
details on the optimization and runtime performance of
CleverCSV can be found in Appendix B.

JOURNAL 6

Example of using CleverCSV. While the automatic dialect
detection proposed in [5] achieves 97% accuracy, one type
of failure arises when there are two delimiters that result in
consistent row lengths and interpretable cells:

"{""name"":""John"",""age"":""28""}",22:34:00,01:16:40
"{""name"":""Sara"",""age"":""26""}",18:28:02,19:32:37
"{""name"":""Bill"",""age"":""31""}",02:51:34,10:14:58
"{""name"":""Jane"",""age"":""18""}",13:06:36,16:59:47

A dialect with colon (:) as the column separator maximizes
the consistency measure even though comma (,) is the
correct separator. This happens because splitting the data
on the colon character results in regular row lengths and
because the JSON syntax in the first column is an unknown
data type for CleverCSV. The correct dialect receives the
second-highest consistency score and it differs from the
chosen dialect only in the delimiter character. This can be
corrected with single interaction. In fact, choicesX(H) could
automatically propose the constraint fix_delimiter(,) first.

4.3 ptype: Inferring column types
After parsing data, the next step is often to identify the
data types for each column. This becomes challenging in the
presence of missing and anomalous data. The probabilistic
type detection package ptype [30] uses a Probabilistic Finite-
State Machine model to solve this problem with an overall
accuracy of 93%, but lower for data types like dates. We
recast ptype as an interactive AI assistant that allows the
data analyst to correct errors in those situations.

Formal definition of ptype. For simplicity, we consider input
data X with just a single column. The expression e repre-
sents inferred information for the column and consists of the
inferred column type τ and sets of values which (conditional
on that type) are deemed missing and anomalous. Human
interactions H allow the analyst to constrain the type (τ),
missing values (u), and anomalous values (v):

e = (τ, {u1, . . . , uk}, {v1, . . . , vl})
c = not_type(τ) | not_missing(u) | not_anomaly(v)

The not_type(τ) constraint marks τ as an incorrect column
type, while not_missing(u) and not_anomaly(v) prevent
ptype from treating values u, v as missing and anomalous.

Probabilistic model. The objective function for ptype is de-
rived from a probabilistic model that views expressions e as
parameters of the transformation f and human interactions
H as a meta-parameter that adjusts the likelihood of values
in the parameter space. The QH(X, e) function is derived
from two probability distributions:

– pH(X | e) denotes the likelihood of the input data X
given an expression e, which represents a type along-
side with missing and anomalous values

– pH(e) is a distribution over the expressions, repre-
senting prior beliefs about probabilities of expressions,
i.e., types with missing and anomalous values

The probability distributions are written as pH because, in
general, a human interaction can change the shape of the
distribution as well as its parameters. In the case of ptype,
human interactions do not affect the probability distribu-
tions, but are used later when selecting the solution from a
distribution over types.

The objective of a probabilistic AI assistant such as ptype
is to maximize the posterior probability distribution of the
set of expressions given the data. This is obtained from
the prior distribution over the expressions p(e) and the
likelihood model p(X | e) using Bayes’ rule:

QH(X, e) = pH(e |X) ∝ pH(X | e)pH(e)

The operation bestX(H) then takes the type with the highest
probability according to QH(X, e) that is compatible with
the constraints specified by the user. If there are no con-
straints, this is the maximum a posteriori (MAP) solution.
If the MAP solution is incorrect, the analyst can choose the
not_type constraint to obtain the next most likely value.

Implementation. Since non-interactive ptype [30] infers the
posterior distribution, our interactive tool only needs to
select the most likely solution compatible with the specified
constraints. Interestingly, this is a general approach which
can be implemented for any tool based on a probabilistic
framework, regardless of the particular problem it solves.

When generating constraints, choicesX allows the ana-
lyst to mark a type as incorrect, but also to mark values
inferred as anomalous or missing as valid. This forces the
assistant to choose the best type that considers them as nor-
mal. The formal model of the logic is given in Appendix A.

4.4 ColNet: Semantic type prediction
Annotating data with semantic information can further as-
sist data analysis. Tools like OpenRefine [10] and ColNet [31]
automatically annotate tabular data with semantic types
such as dbo:Company and dbo:Person obtained from a
knowledge graph [32] such as DBpedia [33]. This may fail
when data contain ambiguous values such as “Apple” or
“Virgin” or values that do not exist in the knowledge graph
(e.g., non-famous people [34]). We present an AI assistant
based on ColNet (currently under development) that lets
the analyst resolve such errors.

Formal definition of ColNet. ColNet is an optimization-based
AI assistant, but it has a different structure than datadiff
and CleverCSV. For simplicity, we consider a single-column
input X formed by a set of values vi. When inferring the
semantic type, ColNet uses a set of samples S1, S2, . . . , Sn

which each contain several individual values from the input
data. The sampling method is discussed in [31].

The expression produced by the assistant is a single
semantic type σ, to be attached to the dataset. The analyst
can influence the result by specifying a list of constraints.
The constraints is_type(S, σ) and not_type(S, σ) override
the automatically inferred type for a given sample S.

In contrast to the constraints used in ptype, the con-
straints used by ColNet override the type of individual sam-
ples, rather than the overall type of a column. A constraint
does not fix a type of the column, but merely provides a hint
regarding one of several samples.

Objective function optimization. Non-interactive ColNet [31]
pre-trains a Convolutional Neural Network (CNN) model
for each (relevant) semantic type in the knowledge graph
and fine-tunes the model with information from the column
to be annotated. The CNN is then used to rank the possible
semantic types obtained by querying the knowledge graph.

JOURNAL 7

Given a set of samples S from a given column, non-
interactive ColNet predicts a score pσS in [0, 1] for each
sample S ∈ S and semantic type σ. The score indicates
the likelihood that values in S have a type σ. ColNet then
averages scores over given samples (i.e., pσS = 1

|S|
∑

S∈S p
σ
S)

and chooses the semantic type σ with the largest score. In
interactive ColNet, human interactions affect the scoring of
samples. Assuming pσS is the score given by non-interactive
ColNet, the interactive AI assistant uses qσH,S defined as:

qσH,S =

1 when is_type(S, σ) ∈ H
0 when not_type(S, σ) ∈ H
pσS otherwise

The objective function QH(X, e) is defined by the overall
score qσH,S, computed as the average of scores of individual
samples, i.e., qσH,S =

1
|S|

∑
S∈S q

σ
H,S .

The bestX operation searches for a semantic type s (from
a knowledge graphG) that maximizes the objective function
QH . The constraints offered by choicesX allow the analyst
to mark any of the samples S ∈ S as either having or not
having a predicted type and are generated as follows:

choicesX(H) =

{is_type(S, σ), not_type(S, σ) | S∈S, σ∈G, pσS≥ϵ}
To offer only relevant types, the constraint generation can
be limited to types with a score greater than a threshold ϵ.

Example of using ColNet. One of the columns in the broad-
band quality data (Section 2) includes company names Vir-
gin, BT, Sky, and Vodafone. Non-interactive ColNet predicts
the semantic types (with an associated score in parentheses):
dbo:Work (0.6), dbo:Company (0.5) and dbo:Person (0.4).

The correct type dbo:Company is not in the top position.
This case is complex due to the use of acronyms (BT)
and ambiguous entries (Virgin). In the case of Virgin, the
expected entity is dbr:Virgin_media, but ColNet also finds
dbr:Virgin_of_the_Rocks (a painting of type dbo:Work) and
dbr:Mary,_mother_of_Jesus (type dbo:Person).

To resolve the ambiguity regarding Virgin and obtain
the expected semantic type, the analyst can specify a con-
straint is_type({“Virgin”}, dbo:Company), which fixes the
semantic type for the sample S={“Virgin”}. This constraint
indirectly decreases the likelihood that the types dbo:Work
or dbo:Person will be inferred as the best semantic type.

5 EVALUATION

The previous section shows that the notion of an AI assistant
captures a wide range of practical semi-automatic data
wrangling tools. In this section, we evaluate the specific
AI assistants that were presented. In Section 5.1, we use
three scenarios to compare our tools with the state of the art
systems. In Section 5.2, we quantify how many human inter-
actions are needed to obtain the correct result with AI assis-
tants in cases where the state of the art automatic tool fails.
Performance is discussed in Appendix B (see supplement).

For the evaluation, we use real-world datasets from var-
ious sources with manually identified ground truth (Clev-
erCSV, ptype) or synthetic dataset with ground truth known
by construction (datadiff). A summary of datasets used can
be found in Table 4 in the Appendix (see supplemental files).

TABLE 1
Comparing Ofcom broadband quality data for 2014 and 2015.

Name (’15) Col (’15) Name (’14) Col (’14)

UL24hrmean 18 Upload (Mbit/s)24-hour 13
Web24hr 32 Web page (ms)24-hour 28
DL24hrmean 14 Download (Mbit/s) 24 hrs 10
URBAN2 10 Urban/rural 4
Nation 11 N/A N/A
Latency24hr 30 Latency (ms)24-hour 24

5.1 Data wrangling scenarios

We first consider four real-world data wrangling scenarios
based either on a problem from the literature [5], [30], [35]
or earlier data analyses done by the authors.

5.1.1 datadiff: Merging Broadband data

For datadiff, we expand the example from Section 2. The
analyst wants to analyze the change in broadband quality
and needs to merge data for years 2014 and 2015. She
selects six columns from 2015 and uses datadiff to find cor-
responding columns from 2014. Table 1 shows the relevant
column names and indices, which have changed between
years. Note that “Nation” (a categorical column with values
England, Wales, Scotland) has been added in 2015. The
analyst obtains the correct result after three interactions:

1) datadiff matches Nation with LLU, a categorical col-
umn with three values (LLU, non-LLU and Cable). The
analyst chooses “Don’t match LLU and Nation”.

2) datadiff matches Nation with Urban.rural, another
categorical column with three values. The analyst se-
lects “Don’t match Urban.rural and Nation”.

3) datadiff matches Nation with Technology, yet an-
other categorical column with three values. The analyst
chooses “Don’t match Technology and Nation’.

4) datadiff correctly identifies that Nation has no corre-
sponding column in 2014 and generates an insert patch
to add a new empty column.

In all three interactions, the analyst immediately notices
that there is one incorrectly matched column and selects
a nomatch constraint. In non-interactive datadiff [6], the
analyst would have to manually edit the initial set of patches
(returned as an R object) or tweak one of the datadiff hyper-
parameters. Either of those is more complex than choosing
three constraint with informative labels.

In Trifacta [9], the same task can be solved by using the
“Add Union” operation. Here, the analyst chooses the 2015
dataset, selects the desired 6 columns and then adds the 2014
dataset. Choosing “auto align” invokes a proprietary algo-
rithm that attempts to find matching columns using column
names, column types, and similarity between sampled data.

At the time of writing, the algorithm aligned two of the
columns (“UL24hrmean” and “Latency24hr”) and provided
no mapping for the remaining four that have to be matched
manually using a graphical user interface. In other words,
Trifacta is less successful in guessing the initial matching
but, more importantly, it also only implements the onetime
interaction model where analyst invokes the automatic tool
once, but then has to correct all errors manually.

JOURNAL 8

5.1.2 CleverCSV: Parsing large and messy CSV files

Dialect detection can seem a trivial task, but large CSV files
can hide problems that are difficult to detect manually. We
consider two scenarios: one where CleverCSV infers the
dialect correctly and one where a single human interaction
is needed.

First, consider the Internet Movie Database file1, which
contains descriptive statistics for 14,762 movies. A few rows
and columns from the file look as follows:

1 fn,title,imdbRating
2 titles01/tt0015864,Goldrausch (1925),8.3
3 titles01/tt0017136,Metropolis (1927),8.4
4 titles01/tt0017925,Der General (1926),8.3
5 titles02/tt0080388,Atlantic City\,USA (1980),7.4

In this case, CleverCSV infers the correct dialect fully au-
tomatically. The standard R and Python functions fail to
identify the escape character (\) which is used for movies
with a comma in the title (line 5) and load 15,190 and 13,928
rows, respectively. Trifacta [9] also does not correctly handle
the escape character. It assumes the file has three columns
due to the first row and silently merges the additional
data into the last column. OpenRefine [10] instead adds a
fourth column due to the fact that the last row contains
three delimiters. Such failures can be very time consuming
to address and neither Trifacta nor OpenRefine provide
straightforward mechanisms to mitigate this problem.

In cases when CleverCSV does not automatically detect
the correct dialect, the AI assistant shows a preview of the
parsed CSV file to the analyst, who can steer CleverCSV in
the right direction. The following shows a few lines of a CSV
file that contains filenames and RGB color codes2:

1 1894_0.jpg 51,47,45 87,88,86 110,112,110
2 1895_0.jpg 37,25,24 87,59,47 105,88,88
3 1895_1.jpg 48,34,46 80,51,58 98,80,88
4 1901_0.jpg 45,46,55 100,96,91 115,139,129
5 1901_1.jpg 45,46,48 71,66,61 98,97,94

For this file, CleverCSV predicts the comma as the delimiter
even though the tab character is used. The analyst notices
the issue easily thanks to the provided preview and can fix
the parsing through a single interaction: by choosing the
fix_delimiter(\t) constraint to set the correct delimiter.

For the same file, OpenRefine chooses underscore as
the delimiter, whereas Trifacta uses the comma character.
While in this case the user can select the correct delimiter in
OpenRefine, this is not the case in Trifacta, where additional
manual interaction is needed to get the data to a usable state.

5.1.3 ptype: Annotating the Cylinder Bands dataset

For the type inference task, we consider the Cylinder Bands
dataset from the UCI repository [36]. The file contains
data on process defects known as “cylinder bands” in ro-
togravure printing. When analyzing the file, ptype fails to
correctly identify the type for some columns of this dataset.

For example, the “ESA Amperage” column contains
mostly the 0 value (480 out of 540 entries) and a small
number of other values (0.5, 4, 6, ?). The initial type offered
by ptype is Boolean with 0.5, 4 and 6 incorrectly treated as

1. From: https://www.kaggle.com/orgesleka/imdbmovies.
2. Available at: https://github.com/victordiaz/color-art-bits-.

TABLE 2
Interactions required to solve a wrangling task for each AI assistant.

AI assistant (dataset) Number of interactions Average
0 1 2 3 4+

datadiff (UCI) 0.52 0.20 0.12 0.00 0.18 3.25
datadiff (without Iris) 0.63 0.22 0.15 0.00 0.00 1.40
CleverCSV (GitHub) 0.20 0.70 0.05 0.04 0.00 1.17
ptype (Various) 0.33 0.51 0.16 0.00 0.00 1.24

anomalies and ? correctly identified as missing data. This is
perhaps unsurprising given the dominance of 0 values.

The analyst can obtain the correct type through a single
interaction, by choosing “ESA Amperage is not Boolean”,
which adds the not_type(Boolean) constraint. The assistant
then returns the correct, second most likely, data type Float
with no anomalies and ? as the missing data indicator.

State of the art tools face similar issues. Trifacta labels the
“ESA Amperage” column with the integer type rather than
float. It considers 4 and 6 valid values, but 0.5 and ? are
treated as mismatched values. The analyst needs to change
the assigned type to float through the user interface, by
clicking on the integer sign and then selecting the float type.
This interaction is specific to type inference in Trifacta and
requires familiarity with the graphical user interface.

OpenRefine does not directly address column-type in-
ference. Instead, it separately infers the type for each en-
try. It correctly identifies the data type for the entries of
“ESA Amperage” as it uses the numeric label rather than
separate float and integer types. However, user interaction
is required for many other columns in the same dataset
that are labeled correctly by both ptype and Trifacta. For
example, the “grain screened” column represents a Boolean
with values yes and no. Here, ptype and Trifacta correctly
infer the type as Boolean, whereas OpenRefine treats the
values as text. Changing the assigned type to Boolean
converts both yes and no to false. To get the correct
types, the analyst first needs to replace all values of yes
with true.

5.2 Empirical evaluation
For optimization-based AI assistants, we can evaluate how
many interactions are needed to arrive at the correct result.
As each assistant solves a different task, we need to use a
different dataset for each. Table 2 shows the results; for each
AI assistant, we show the fraction of cases that requires
a specific number of interactions. The “Average” column
shows the average over the cases where some human inter-
action is required. The datasets used are discussed below.

datadiff. Following the original datadiff evaluation [6] we
use a synthetic dataset obtained by corrupting five datasets
from the UCI repository [36] (Abalone, Adult, Bank, Car,
Iris). To corrupt a file, we randomly reorder columns and
apply two other randomly chosen corruptions.

The corruptions include inserting a numerical column
(with values from a uniform distribution U(0, 1)), insert-
ing a categorical column (with two evenly distributed val-
ues), deleting a random column, recoding a categorical
column and applying a linear transformation (with a from
U(−0.5, 0.5) and b from U(−2v, 2v) where v is the mean of

JOURNAL 9

the values in the column). We apply the corruption to a ran-
domly selected half of the data and attempt to reconcile the
two halves using datadiff. When datadiff does not produce
the expected result, we repeatedly add nomatch constraints
to prevent incorrect matchings inferred by datadiff.

Our corruptions and dataset are more challenging than
those used previously [6]. We note that datadiff performs
poorly on one of the five datasets (Iris), so the table shows
results for all five datasets as well as for the remaining
four (without Iris). Datadiff requires no human interaction
in 52% and 63% cases, respectively. Our evaluation models
the case where the analyst can easily spot an error and
inform the assistant, but the number of interactions could be
reduced further by choice of the explicit match constraint.

CleverCSV. To evaluate CleverCSV, we revisit the failure
cases of the non-interactive CleverCSV [5] and count in-
teractions needed to find the correct dialect. We apply the
assistant on 255 files from a corpus of CSV files extracted
from GitHub where the dialect was detected incorrectly
in [5]. We focus on this selection as the 97% of cases where
CleverCSV detects the dialect correctly are not relevant here.
Since the dialect considered for the CSV file consists of three
components, the maximum number of interactions is three.

For 20% of the 255 files no interaction is needed to find
the correct dialect. This can be attributed to improvements
in CleverCSV since publication of [5]. For the majority of
files (70%) a single interaction was needed, with an average
of only 1.17. This illustrates that as the human provides a
constraint to the AI assistant, the limits on the search space
allow CleverCSV to quickly arrive at the correct answer.

ptype. To evaluate the ptype AI assistant, we consider
43 (out of 610) data columns where the types were not
inferred correctly by the non-interactive ptype [30], using
a corpus obtained from various sources including the UCI
repository [36] and open government data sources. To guide
the assistant, we iteratively add the not_type constraint.

Although ptype recognizes 11 data types, we focus on
5 primitive types (Boolean, integer, floating-point number,
date, string) to allow comparison with other tools. Even with
5 types, identifying them correctly by hand remains difficult,
because ptype also detects anomalous and missing values,
which may not be easy to notice for a human analyst.

Of the 43 data columns, no interaction is needed for
33% of cases. As with CleverCSV, this is due to recent im-
provements in ptype. A single interaction was needed for a
majority of files (51%). In those cases, the assistant arrives at
the correct answer by choosing the second most likely type.
The remaining columns require two interactions, resulting
in an average of 1.24. Note that rejecting the offered type is
a simpler interaction than directly selecting a type, which
would reduce the maximum number of interactions to one.

Summary. The quantitative evaluation of three AI assistants
demonstrates that many data wrangling tasks can be solved
much more efficiently by creating opportunities where the
human analyst can nudge the tool in the right direction. This
approach obviates the need for tedious data manipulation in
spreadsheet applications or case-specific wrangling scripts,
and is significantly easier to implement than fully automatic
tools that need to cover numerous edge cases.

6 RELATED WORK

The problem of data wrangling has been studied by both
practitioners [1], [2], [37] and academics [12], [38], [39], [40].
These studies repeatedly mention the problems that moti-
vated our work. We believe that interactivity, and uniformity
are crucial. Interactivity allows incorporating crucial human
insights, and a common structure makes it possible for the
analyst to easily access a wide range of tools.

Programming and analytic systems. Data wrangling is often
done programmatically in the R and Python languages,
using libraries such as Tidyverse and Pandas [7], [8] in note-
book systems like RStudio and Jupyter. Our AI assistants
are available for the Jupyter platform through the Wrattler
extension [41], which enables polyglot programming.

Spreadsheets and business intelligence tools such as
Tableau and Power BI provide a complex set of features for
data analytics, often used through a complex graphical user
interface, while more focused data wrangling tools like Tri-
facta and OpenRefine [9], [10] provide similar environments
focused on data cleaning. As discussed in Section 5, those
tools address many of the specific problems addressed by
AI assistants, but lack uniformity and rarely implement the
powerful iterative interaction model.

Data wrangling and repair tools. A number of tools attempt
to solve a specific data wrangling problem automatically,
including the tools extended in this paper [5], [6], [30], [31]
as well as tools for data imputation [42], deduplication [16],
and parsing [15]. These tools often achieve a high accuracy,
but they lack an easy-to-use mechanism for incorporating
critical human insights in cases where the automatic answer
is incorrect. Automatic tools can also be guided by a manu-
ally written domain-specific data model, as in PClean [43].

A few systems utilize the flexible iterative interaction pat-
tern to suggest possible data transformations using machine
learning. Proactive wrangling [24] suggests data transfor-
mations to improve data structure based on a metric and
offers those to the user. In Predictive Interaction [18], inputs
provided by the analyst are used to generate a ranked
list of predictions from which the analyst can choose or,
alternatively, provide further inputs. This is similar to how
AI assistants work, but the way of specifying feedback is
domain-specific, e.g., highlighting substrings in textual data.

The problem of incorporating user input has been ex-
tensively studied in data repair tools for databases [44],
[45]. Tools for enforcing functional database dependencies
[19], [20], [46] work by asking analysts questions about the
data and using the answers to improve the model used for
data repair. Such tools could be recast as AI assistants; they
complement our examples in that they focus on working
with databases whereas our focus is on less structured data.

Programming language approaches. Numerous program-
matic tools offer a small domain-specific language for a
particular data wrangling task such as statistical analysis
or data visualization [47], [48]. A small domain-specific
language is also at the core of semi-automatic tools such
as LearnPADS and Predictive Interaction [15], [18]. AI as-
sistants follow the same approach in that the expressions of
individual AI assistants form small languages that are easy
to understand.

JOURNAL 10

AI assistants can also be seen as a form of code com-
pletion. This typically focuses on offering available oper-
ations, possibly using machine learning to rank the rec-
ommendations [49]. Type providers [50], [51] are closer to
our approach in that the recommendations are generated
programmatically, similar to our choices operation.

Human-computer interaction. Two interaction techniques
used in data wrangling tools are direct manipulation and
programming-by-example. In the former, a program is spec-
ified by directly interacting with the output. This has been
used for data analysis and querying [52], [53], [54], [55], as
well as data wrangling [45]. In the latter, the user gives
examples of desired results, for example, to specify data
transformations in spreadsheets [14]. This results in an itera-
tive interaction mechanism, but one where the analyst needs
to specify more complex inputs as opposed to just choosing
from a list of options. Novel human-interaction techniques
for data wrangling also include touch-based editing [56],
natural language [57], and conversational agents [58].

Human in the loop. Our work contributes to the emerg-
ing field of human-in-the-loop data analytics [23], [59]. AI
assistants particularly implement the “efficient correction”
pattern [60]. We focus on supporting an individual analyst,
but a range of systems involve multiple users in addressing
data wrangling problems. In [61], data cleaning problems
are solved by assigning the tasks that cannot be automated
to human “detectors” and “repairers” and several data
cleaning tools rely on crowdsourcing [62], [63], [64].

7 FUTURE WORK

Allowing AI assistants to accept richer user inputs would
let us support programming-by-example. Programming-by-
example can be seen as ranking programs in an underlying
DSL that are consistent with a given set of training examples
[65], fitting well with our optimization-based AI assistant
structure. Alternatively, focusing on probabilistic AI assis-
tants would let the system leverage additional information,
such as the distribution of possible cleaning scripts, allow-
ing users to choose a desired solution more effectively. The
usability of AI assistants could also be improved by offering
possible choices in a more structured way than as a flat list.

The AI assistants presented in this paper solve individ-
ual data wrangling problems, but a typical data wrangling
workflow involves a combination of tools. An interesting
direction for future work is to recommend the entire data
wrangling workflow, composed of multiple AI assistant
invocations. This could be done by repeatedly predicting
the next step as in [18], [24]. Closer interaction between AI
assistants could also lead to better results. For example, the
consistency measure used by CleverCSV could incorporate
information obtained from ptype or ColNet, while datadiff
could prefer matching columns with the same data type, as
inferred by ptype or ColNet.

Finally, AI assistants do not currently learn from past
user interaction. Using the interactions with human analysts
to improve the models underlying the AI assistants as well
as learning the ways in which AI assistants are composed
could provide valuable information for improving the accu-
racy of the inference done by the assistants.

8 CONCLUSION

Data wrangling is notoriously tedious and hard to auto-
mate. It has eluded the recent rise of AI because large
datasets hide corner cases that require human insight. We
have introduced the notion of AI assistants, which captures
the structure of semi-automatic, interactive tools for data
wrangling. We showed how the definition captures common
types of tools and makes them easy to use from notebook
systems. We developed four concrete AI assistants that are
flexible interactive versions of existing non-interactive tools.

This paper makes two claims. First, we argue that the
structure of AI assistants is a suitable abstraction for inter-
active data wrangling tools. Second, we argue that our inter-
active AI assistants are more practical than fully automatic
tools. To support the first claim, we present AI assistants that
cover a wide range of data wrangling tasks including pars-
ing, merging mismatched datasets, type inference, and the
inference of semantic information. To support our second
claim, we discuss three real-world case studies where a fully
automatic tool does not give the desired result, together
with an empirical evaluation that showed that users can
typically solve a wrangling task with 1-3 simple interactions.

While we cannot hope to reduce to zero the 80% of the
time that data analysts spend on data wrangling solely with
what we have described above, we believe that our frame-
work provides the right pathway. A growing ecosystem of
interactive unified AI assistants would allow data analysts
to fully leverage recent AI advances for the most tedious
and time-consuming aspect of their job and pave the way for
more equitable access to data science and machine learning.

ACKNOWLEDGMENTS

The work was supported in part by EPSRC grant
EP/N510129/1 to The Alan Turing Institute. TP and CW
would like to acknowledge the funding provided by the UK
Government’s Defence & Security Programme in support
of The Alan Turing Institute. The work of EJR was also
supported in part by the SIRIUS Centre for Scalable Data
Access (Research Council of Norway, project 237889) and
TC was supported by a PhD studentship from The Alan
Turing Institute (EPSRC grant TU/C/000018).

The work on AI assistants would not be possible without
work on Wrattler by May Yong and Nick Barlow. We ben-
efited from discussions with colleagues in The Alan Turing
Institute, especially Charles Sutton and James Geddes. We
would also like to highlight the contribution of Jiaoyan
Chen, the researcher behind the non-interactive ColNet. Last
but not least, we thank the anonymous reviewers for their
comments that have helped improve the paper.

REFERENCES

[1] Crowdflower, “Data science report,” 2016, accessed Novem-
ber 2018. [Online]. Available: http://visit.figure-eight.com/
data-science-report.html

[2] Kaggle, “The state of data science & machine learning,”
2017, accessed September 2018. [Online]. Available: http:
//kaggle.com/surveys/2017

[3] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-
the-art,” Knowledge-Based Systems, vol. 212, p. 106622, 2021.

[4] T. De Bie, L. De Raedt, J. Hernández-Orallo, H. H. Hoos, P. Smyth,
and C. K. I. Williams, “Automating data science: Prospects and
challenges,” Commun. ACM, vol. 65, no. 3, p. 76–87, 2022.

JOURNAL 11

[5] G. J. J. Van den Burg, A. Nazábal, and C. Sutton, “Wrangling messy
CSV files by detecting row and type patterns,” Data Mining and
Knowledge Discovery, vol. 33, no. 6, pp. 1799–1820, 2019.

[6] C. A. Sutton, T. Hobson, J. Geddes, and R. Caruana, “Data Diff:
Interpretable, executable summaries of changes in distributions
for data wrangling,” in 24th ACM SIGKDD Conference, 2018.

[7] W. McKinney, “pandas: a foundational Python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, 2011.

[8] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan,
R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester et al.,
“Welcome to the Tidyverse,” Journal of Open Source Software, vol. 4,
no. 43, p. 1686, 2019.

[9] Trifacta, “Trifacta – data wrangling softaware and tools,” 2021,
accessed July 2022. [Online]. Available: https://www.trifacta.com

[10] A. Delpeuch, D. Huynh, T. Morris, S. Mazzocchi, and contributors,
“OpenRefine: A free, open source, powerful tool for working with
messy data,” 2021. [Online]. Available: https://openrefine.org/

[11] R. Wesley, M. Eldridge, and P. T. Terlecki, “An analytic data engine
for visualization in Tableau,” in Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’11, T. Sellis, R. Miller, A. Kementsietsidis, and Y. Velegrakis, Eds.
ACM, 2011, pp. 1185–1194.

[12] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono, “Research directions
in data wrangling: Visualizations and transformations for usable
and credible data,” Information Visualization, vol. 10, no. 4, pp. 271–
288, 2011.

[13] M. Aristarán, “Tabula,” 2021. [Online]. Available: https://github.
com/tabulapdf/tabula

[14] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manip-
ulation using examples,” Communications of the ACM, vol. 55, no. 8,
pp. 97–105, 2012.

[15] K. Fisher, D. Walker, and K. Q. Zhu, “LearnPADS: automatic
tool generation from ad hoc data,” in Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’08, 2008, pp. 1299–1302.

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 1, pp. 1–16, 2007.

[17] T. Petricek, “Foundations of a live data exploration environment,”
Art Sci. Eng. Program., vol. 4, no. 3, p. 8, 2020.

[18] J. Heer, J. M. Hellerstein, and S. Kandel, “Predictive interaction for
data transformation,” in Proceedings of the Conference on Innovative
Data Systems Research (CIDR), 2015.

[19] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F.
Ilyas, “Guided data repair,” Proceedings of the VLDB Endowment,
vol. 4, no. 5, pp. 279–289, 2011.

[20] S. Thirumuruganathan, L. Berti-Equille, M. Ouzzani, J.-A. Quiane-
Ruiz, and N. Tang, “UGuide: User-guided discovery of FD-
detectable errors,” in Proceedings of the ACM International Confer-
ence on Management of Data, ser. SIGMOD ’17, 2017, pp. 1385–1397.

[21] E. Horvitz, “Principles of mixed-initiative user interfaces,” in
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, 1999, pp. 159–166.

[22] J. Williams, C. Negreanu, A. D. Gordon, and A. Sarkar, “Under-
standing and inferring units in spreadsheets,” in 2020 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 2020, pp. 1–9.

[23] A. Doan, “Human-in-the-loop data analysis: A personal perspec-
tive,” in Proceedings of the Workshop on Human-In-the-Loop Data
Analytics, ser. HILDA ’18. ACM, 2018.

[24] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive
wrangling: mixed-initiative end-user programming of data trans-
formation scripts,” in Proceedings of the 24th annual ACM symposium
on User interface software and technology. ACM, 2011, pp. 65–74.

[25] Ofcom, “Open data,” 2018. [Online]. Available: https://www.
ofcom.org.uk/research-and-data/data/opendata

[26] R. Bird and O. de Moor, The Algebra of Programming. Prentice-Hall,
1996.

[27] O. Bachem, M. Lucic, and A. Krause, “Practical coreset construc-
tions for machine learning,” arXiv preprint arXiv:1703.06476, 2017.

[28] H. W. Kuhn, “The Hungarian method for the assignment prob-
lem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, 1955.

[29] Y. Shafranovich, “Common format and MIME type for comma-
separated values (CSV) files,” Internet Requests for Comments,
Tech. Rep. RFC 4180, 2005.

[30] T. Ceritli, C. K. I. Williams, and J. Geddes, “ptype: Probabilistic
type inference,” Data Mining and Knowledge Discovery, vol. 34,
no. 3, pp. 870—-904, 2020.

[31] J. Chen, E. Jiménez-Ruiz, I. Horrocks, and C. Sutton, “ColNet: Em-
bedding the semantics of web tables for column type prediction,”
in Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 29–36.

[32] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. d. Melo,
C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier
et al., “Knowledge graphs,” Synthesis Lectures on Data, Semantics,
and Knowledge, vol. 12, no. 2, pp. 1–257, 2021.

[33] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer et al.,
“DBpedia–a large-scale, multilingual knowledge base extracted
from Wikipedia,” Semantic web, vol. 6, no. 2, pp. 167–195, 2015.

[34] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, and
K. Srinivas, “SemTab 2019: Resources to Benchmark Tabular Data
to Knowledge Graph Matching Systems,” in The Semantic Web -
17th International Conference (ESWC), 2020, pp. 514–530.

[35] A. Nazábal, C. K. I. Williams, G. Colavizza, C. R. Smith, and
A. Williams, “Data engineering for data analytics: A classification
of the issues, and case studies,” CoRR, vol. abs/2004.12929, 2020.
[Online]. Available: https://arxiv.org/abs/2004.12929

[36] K. Bache and M. Lichman, “UCI machine learning repository,”
2013. [Online]. Available: archive.ics.uci.edu/ml

[37] T. Dasu and T. Johnson, Exploratory Data Mining and Data Cleaning,
1st ed. John Wiley & Sons, Inc., 2003.

[38] S. Krishnan, D. Haas, M. J. Franklin, and E. Wu, “Towards reliable
interactive data cleaning: a user survey and recommendations,”
in Proceedings of the Workshop on Human-In-the-Loop Data Analytics,
ser. HILDA ’16. ACM, 2016.

[39] M. I. Gorinova, K. Prince, S. Meakins, A. Vuylsteke, M. Jones,
and A. F. Blackwell, “The end-user programming challenge of
data wrangling,” in Proceedings of the 27th annual workshop of the
Psychology of Programming Interest Group (PPIG), 2016, pp. 140–149.

[40] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in
deploying machine learning: a survey of case studies,” ACM
Computing Surveys, 2020.

[41] T. Petricek, J. Geddes, and C. A. Sutton, “Wrattler: Reproducible,
live and polyglot notebooks,” in 10th USENIX Workshop on Theory
and Practice of Provenance (TaPP 2018), 2018.

[42] A. Nazábal, P. M. Olmos, Z. Ghahramani, and I. Valera, “Handling
incomplete heterogeneous data using VAEs,” Pattern Recognition,
vol. 107, p. 107501, 2020.

[43] A. Lew, M. Agrawal, D. Sontag, and V. Mansinghka, “PClean:
Bayesian data cleaning at scale with domain-specific probabilistic
programming,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2021, pp. 1927–1935.

[44] A. Assadi, T. Milo, and S. Novgorodov, “DANCE: data cleaning
with constraints and experts,” in IEEE 33rd International Conference
on Data Engineering (ICDE). IEEE, 2017, pp. 1409–1410.

[45] V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive
data cleaning system,” in Proc. of the 27th Intl. Conference on Very
Large Data Bases. Morgan Kaufmann, 2001, pp. 381–390.

[46] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional
functional dependencies for capturing data inconsistencies,” ACM
Transactions on Database Systems, vol. 33, no. 2, pp. 1–48, 2008.

[47] E. Jun, M. Daum, J. Roesch, S. Chasins, E. Berger, R. Just, and
K. Reinecke, “Tea: A high-level language and runtime system for
automating statistical analysis,” in Proceedings of the 32nd Annual
ACM UIST Symposium 2019, F. Guimbretière, M. Bernstein, and
K. Reinecke, Eds. ACM, 2019, pp. 591–603.

[48] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-lite: A grammar of interactive graphics,” IEEE Tran. on Vis.
and Comp. Graphics, vol. 23, no. 1, pp. 341–350, 2016.

[49] M. Bruch, M. Monperrus, and M. Mezini, “Learning from exam-
ples to improve code completion systems,” in Proceedings of the
7th joint meeting of the European Software Engineering Conference
and the ACM International Symposium on Foundations of Software
Engineering. ACM, 2009, pp. 213–222.

[50] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek,
“Themes in information-rich functional programming for internet-
scale data sources,” in Proceedings of Workshop on Data Driven
Functional Programming, ser. DDFP ’13. ACM, 2013, pp. 1–4.

[51] T. Petricek, “Data exploration through dot-driven develop-
ment,” in 31st European Conference on Object-Oriented Programming.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

JOURNAL 12

[52] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Ra-
man, T. Roth, and P. J. Haas, “Interactive data analysis: the Control
project,” Computer, vol. 32, no. 8, pp. 51–59, 1999.

[53] B. Shneiderman, C. Williamson, and C. Ahlberg, “Dynamic
queries: Database searching by direct manipulation,” in Conference
on Human Factors in Computing Systems, CHI ’92, P. Bauersfeld,
J. Bennett, and G. Lynch, Eds. ACM, 1992, pp. 669–670.

[54] M. Derthick, J. Kolojejchick, and S. F. Roth, “An interactive visual
query environment for exploring data,” in Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology,
UIST ’97, G. G. Robertson and C. Schmandt, Eds. ACM, 1997, pp.
189–198.

[55] A. Abouzied, J. M. Hellerstein, and A. Silberschatz, “Dataplay:
interactive tweaking and example-driven correction of graphical
database queries,” in The 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, R. Miller, H. Benko, and
C. Latulipe, Eds. ACM, 2012, pp. 207–218.

[56] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska,
“Vizdom: Interactive analytics through pen and touch,” Proceed-
ings of the VLDB Endownment, vol. 8, no. 12, pp. 2024–2027, 2015.

[57] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang,
“Eviza: A natural language interface for visual analysis,” in Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology, UIST ’16, J. Rekimoto, T. Igarashi, J. O. Wobbrock, and
D. Avrahami, Eds. ACM, 2016, pp. 365–377.

[58] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein,
“Iris: A conversational agent for complex tasks,” in Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems,
CHI 2018, Montreal, QC, Canada, April 21-26, 2018. ACM, 2018, p.
473.

[59] G. Li, “Human-in-the-loop data integration,” Proceedings of the
VLDB Endowment, vol. 10, no. 12, pp. 2006–2017, 2017.

[60] S. Amershi, D. S. Weld, M. Vorvoreanu, A. Fourney, B. Nushi,
P. Collisson, J. Suh, S. T. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan,
R. Kikin-Gil, and E. Horvitz, “Guidelines for Human-AI interac-
tion,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09,
2019, S. A. Brewster, G. Fitzpatrick, A. L. Cox, and V. Kostakos,
Eds. ACM, 2019, p. 3.

[61] E. K. Rezig, M. Ouzzani, A. K. Elmagarmid, W. G. Aref, and
M. Stonebraker, “Towards an end-to-end human-centric data
cleaning framework,” in Proceedings of the Workshop on Human-In-
the-Loop Data Analytics, ser. HILDA ’19. ACM, 2019.

[62] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang, “NADEEF: a commodity data cleaning
system,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013, pp. 541–552.

[63] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye, “Katara: A data cleaning system powered by knowledge
bases and crowdsourcing,” in Proc. of the 2015 ACM SIGMOD Intl.
Conference on Management of Data, 2015, pp. 1247–1261.

[64] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowd-
sourcing entity resolution,” Proceedings of the VLDB Endowment,
vol. 5, no. 11, pp. 1483–1494, 2012.

[65] S. Gulwani, “Programming by examples (and its applications in
data wrangling),” in Verification and Synthesis of Correct and Secure
Systems. IOS Press, 2016.

Tomas Petricek is a Lecturer in School of Com-
puting at University of Kent, UK. His research fo-
cuses on making programming easier, trustwor-
thy and more accessible. Previously, he worked
on tools for data science in The Alan Turing Insti-
tute and functional programming language F# in
Microsoft Research. He holds PhD from Univer-
sity of Cambridge where he developed theory of
context-aware programming languages.

Alfredo Nazábal is an applied scientist work-
ing in the Amazon Development Center in Ed-
inburgh. Before that he was a Postdoctoral re-
searcher in The Alan Turing Institute in Lon-
don where he worked developing deep gener-
ative models for data analytics problems. He
obtained his PhD in the University Carlos III of
Madrid, where he developed and applied Ma-
chine Learning algorithms for Human Activity
Recognition. His main research interests include
deep generative models, unsupervised learning,

heterogeneous data preprocessing and recommender systems.

Gerrit J.J. van den Burg is an applied scientist
at Amazon. Previously, he was a postdoctoral re-
searcher at The Alan Turing Institute in London,
UK, where he worked on automating the manual
parts of data science using machine learning.
He obtained a PhD from the Erasmus University
Rotterdam in The Netherlands, during which he
focused on developing algorithms for multiclass
classification and sparse regularization.

Taha Ceritli is a postdoctoral research assistant
at the University of Oxford. His current research
focus is machine learning for healthcare. He pre-
viously received his PhD from the University of
Edinburgh on probabilistic data type inference,
which was carried out at and supported by The
Alan Turing Institute.

Ernesto Jiménez-Ruiz is a Lecturer in Artificial
Intelligence at City, University of London (UK),
and a researcher at the University of Oslo (Nor-
way). He previously held a Senior Research As-
sociate position at The Alan Turing Institute in
London (UK) and a Research Assistant position
at the University of Oxford (UK). His research
interests focus on the application of Semantic
Web technology to Data Science workflows and
the combination of Knowledge Representation
and Machine Learning techniques.

Chris Williams is Professor of Machine Learn-
ing in the School of Informatics, University of Ed-
inburgh. His main areas of research are in visual
object recognition and image understanding,
models for understanding time-series, AI for data
analytics, unsupervised learning, and Gaussian
processes. He obtained his MSc (1990) and PhD
(1994) at the University of Toronto, under the
supervision of Geoffrey Hinton. He was at As-
ton University 1994-1998, and has been at the
University of Edinburgh since 1998.

JOURNAL 13

APPENDIX A
FORMAL DEFINITIONS

This appendix provides further details of the formal models
of the AI assistants discussed in the main text. The complete
descriptions provided here enhance the reproducibility of
our work and make it possible to reimplement AI assistant
as presented and evaluated in this paper. A summary of
symbols used in the formalization can be found in Table 5.

datadiff. The definition of the datadiff AI assistant given
in Section 4.1 shows patches, constraints, and the bestX
operation. It omits the choicesX operation and the valid
predicate which identifies patches that are valid for a given
set of human interactions H . The operations of the datadiff
assistant, including the valid predicate, are defined as:

bestX(H) = argmaxe∈EH
Q(X, e) where

EH = {(P1, . . . , Pk) ∈ E | ∀i ∈ 1 . . . k. validH(Pi)}
validH(P) such that

validH(permute(π)) iff
(∀match(i, j) ∈ H. (i, j) ∈ π) ∧
(∀nomatch(i, j) ∈ H. (i, j) /∈ π)

validH(recode(i, [. . .])) iff notransform(i) /∈ H
validH(linear(i, a, b)) iff notransform(i) /∈ H
validH(delete(i))
validH(insert(i, d))

choicesX(H) =

{H ∪ {notransform(i)} | ∀i.recode(i, [. . .]) ∈ e} ∪
{H ∪ {notransform(i)} | ∀i.linear(i, a, b) ∈ e} ∪
{H ∪ {nomatch(i, j)} | permute(π) ∈ e, ∀i, j.(i, j) ∈ π} ∪
{H ∪ {match(i, j)} | permute(π) ∈ e,∀i, j.(i, j) /∈ π}
where e = bestX(H)

ptype. In the ptype AI assistant, bestX is obtained by
taking the maximum a posteriori of the posterior probability
distribution of the set of expressions determined by the
past human interactions. As in the case of datadiff and
CleverCSV, this is defined using the valid predicate. The
choicesX operation allows the analyst to reject an inferred
type and mark an inferred missing or anomalous value as
non-missing or non-anomalous. More formally, the opera-
tions of ptype are defined as follows:

bestX(H) = argmaxe∈EH
pH(X|e) pH(e) where

pH(X|e) = p(X|e) and pH(e) = p(e)

EH = {e ∈ E | validH(e)}
validH(τ, Vm, Va) iff
(not_type(τ ′) ∈ H =⇒ τ ′ ̸= τ) ∨
(not_missing(v) ∈ H =⇒ v /∈ Vm) ∨
(not_anomaly(v) ∈ H =⇒ v /∈ Va)

choicesX(H) = {H ∪ {not_type(t)}} ∪
{H ∪ {not_missing(vj)} | j ∈ J} ∪
{H ∪ {not_anomaly(wk)} | k ∈ K}

where bestX(H) =

(type(t),missing{vj}j∈J , anomaly{wk}k∈K)

CleverCSV. The definition of the CleverCSV AI assistant
closely follows the example of datadiff. The bestX operation
uses the pattern of the optimization-based AI assistants. The
choicesX operation allows the analyst to reject a component
of a currently inferred dialect or to explicitly choose a
specific character for a dialect component. As before, the
valid predicate determines what is a valid dialect given past
human interactions. Formally:

bestX(H) = argmaxe∈EH
Q(X, e) where

EH = {e ∈ E | validH(e)}
validH(is_delimiter(d), is_quote(q), is_escape(a)) iff
(fix_delimiter(d′) ∈ H =⇒ d′ = d) ∨
(fix_quote(q′) ∈ H =⇒ q′ = q) ∨
(fix_escape(a′) ∈ H =⇒ a′ = a) ∨
(block_delimiter(d′) ∈ H =⇒ d′ ̸= d) ∨
(block_quote(q′) ∈ H =⇒ q′ ̸= q) ∨
(block_escape(a′) ∈ H =⇒ a′ ̸= a)

choicesX(H) =

{H ∪ {not_delimiter(cd)}, H ∪ {not_quote(cq)},
H ∪ {not_escape(ce)} } ∪
{H ∪ {delimiter(c)} | ∀c.C} ∪
{H ∪ {quote(c)} | ∀c.C} ∪ {H ∪ {escape(c)} | ∀c.C}

where (delimiter(cd), quote(cq), escape(ce)) = bestX(H).

ColNet. The definition of ColNet differs from the other ex-
amples in that human interactions affect the objective func-
tion QH(X, e) rather than the set of possible expressions
EH . The definition of the objective function is discussed in
Section 4.4. The following provides a full definition of both
of the operations of the AI assistant for completeness:

c = not_type(S, σ) | is_type(S, σ)

pσS = As defined in non-interactive ColNet

qσH,S =

1 when is_type(S, σ) ∈ H
0 when not_type(S, σ) ∈ H
pσS otherwise

qσH,S = 1
|S|

∑

S∈S
qσH,S

bestX(H) = argmaxσ∈GQH(X,σ) where
QH(X,σ) = qσH,S

choicesX(H) =

{is_type(S, σ), not_type(S, σ) | S∈S, σ∈G, pσS≥ϵ}

APPENDIX B
PERFORMANCE CONSIDERATIONS

In general, interactive AI assistants obtained by adapting
an existing non-interactive tool (datadiff, ptype, CleverCSV,
ColNet) invoke the optimization logic of the non-interactive
tool, with small modifications, each time the user interacts
with the assistant. The performance is thus comparable to
the performance of the base tools [5], [6], [30], [31]. In
some cases, however, the interactive AI assistant can reuse
previously computed results and perform more efficiently.

JOURNAL 14

In this section, we briefly discuss performance in typical
real-world scenarios as well as algorithmic complexity of
the optimization and possible performance improvements
for the four AI assistants discussed in the paper.

datadiff. The datadiff AI assistant uses the algorithm from
non-interactive datadiff [6]. This works in two phases. In
the first phase, the algorithm determines a cost matrix Cij

by finding the best patch between each pair of columns. In
the second phase, the algorithm uses the Hungarian algo-
rithm to find the best bipartite matching. The interactive AI
assistant requires two modifications. First, after computing
Cij , we set Cij to 0 for each match(i, j) constraint and to
+∞ for each nomatch(i, j) constraint. Second, we modify
the logic for finding the best patch to not use a recoding or
linear transformation when norecode is specified.

The algorithmic complexity of the first phase is O(n2) in
terms of the number of columns n, while the algorithmic
complexity of the second phase is O(n3). For real-world
datasets, however, most of the time is spent in the first
phase, generating and evaluating possible pairwise patches.
Reconciling the full broadband quality dataset for 2014 (31
columns) and 2015 (71 columns) takes 35 seconds on a
recent computer.3 Reconciling the full 2014 (31 columns)
with filtered 2015 (6 columns) dataset, as done in the case
study in Section 5.1, takes 5 seconds.

This makes the current implementation useable for
smaller datasets. There are two ways in which the per-
formance could easily be improved. First, the cost matrix
(phase one) could be determined on the first run and then
cached. This does not change between runs and would
significantly improve the performance on subsequent in-
teractions. Second, the cost matrix could be determined
based on a sample of the full dataset, possibly improving
the initial cost matrix in background after offering the first
recommendation.

ptype. The ptype AI assistant computes the posterior prob-
abilities over data types based on non-interactive ptype
[30] and updates the initially assigned types according to
the user feedback. This is achieved by storing the poste-
rior probability distributions rather than re-running non-
interactive ptype. Thus, assuming that the number of known
column types and therefore the maximum number of user
corrections is constant, the complexity of the ptype AI assis-
tant becomes identical to the complexity of non-interactive
ptype.

The computational bottleneck in type inference via ptype
is the calculation of probability distribution assigned for a
data column x by the kth PFSM denoted by p(x|t = k).
This calculation is carried out by taking into account only
unique data entries, for efficiency. Denoting the uth unique
data value by xu, the computation of p(xu|t = k) is
done via the PFSM Forward algorithm. This has complexity
O(M2

kL), where Mk is the number of hidden states in the
kth PFSM, and L is the maximum length of the data entries.
Therefore, the overall complexity of the inference becomes
O(UKM2L), where U is the number of unique data entries,

3. Laptop with Intel Core i7-1185G7 processor, 15GB RAM, running
inside Docker container on Windows 11 OS.

K is the number of types, and M is the maximum number
of hidden states in the PFSMs.

Notice that the complexity depends on data through U
and L, and does not necessarily increase with the number
of rows. The runtime for non-interactive ptype has been
shown to scale linearly with the number of unique values
U , handling around 10K unique values per second [30].
This makes the ptype AI assistant feasible in practice. It
would be possible to further improve its performance by
parallelizing the computations. For instance, the calculation
of the probabilities assigned for unique data values can be
calculated independently.

CleverCSV. The CleverCSV AI assistant uses the non-
interactive algorithm of [5] to identify the optimal format-
ting dialect for a given CSV file, X . The possible dialects
are generated by CleverCSV prior to the optimization, and
are based on the set, C, of unique characters in the file.
The optimization proceeds by computing for each dialect
a “pattern score” that captures how regular the structure of
the parsed data is (i.e., whether the resulting table has the
same number of cells in each row), and a “type score” that
captures the proportion of cells in the parsed file with an
identifiable data type. The product of these two scores forms
the objective function to be maximized. Since the type score
is in the range [0, 1], computing it can be skipped for dialects
with a small value for the pattern score (see [5]).

We distinguish three components of CleverCSV: con-
structing potential dialects, computing pattern scores, and
computing type scores. Constructing the dialects can be
done naively inO(|C|) time, with |C| denoting the number of
elements in the set C. In [5] two pruning steps are discussed
to remove unlikely dialects, which increases the complexity
for constructing potential dialects to O(|X| · |C|3). Theoret-
ically, the number of potential dialects is on the order of
|C|3. Computing the pattern score for each dialect is linear
in the size of the input file, O(|X|). If we write T for the set
of data types in the type score, then computing this score
can be done in O(|X| · |T |), as the number of cells in the
parsing result is linear in the size of the input. Combin-
ing these results gives a worst-case runtime complexity of
O(|X|·|T |·|C|3). However, as discussed in [5], the number of
potential dialects is in practice proportional to |C|, giving a
practical runtime complexity of O(|X|·|T |·|C|). The median
runtime for the files in Section 5.2 is 0.018 seconds.

Human interaction with the CleverCSV AI assistant pro-
vides constraints on the dialects considered for the file. By
storing the value of the objective function for each dialect
in a lookup table, interactions with the AI assistant need
only update the allowed dialects in this table, resulting in
interactions that are linear in the number of dialects.

ColNet. The non-interactive version of ColNet trains a CNN
classifier for each (relevant) semantic type in the knowledge
graph. The training is split into two phases [31]: pre-training
and fine-tuning. The pre-training is performed using the
information from the knowledge graph (typically a large
set of samples) while the fine-tuning is computed with the
data from the column to be annotated (typically a small set
of samples).

As described in [31], the classifiers were implemented in

JOURNAL 15

Tensforflow and the pre-trained phase for each classifier was
completed within 2 minutes on a workstation with Xeon
CPU E5-2670. The computation time for the fine-tuning
phase was in the order of seconds. The interactive version
of ColNet relies on the same training phases, where the
pre-training can be run offline for each knowledge graph.
Fine-tuning only needs to be run before the first human
interaction and it is done using a sample drawn from
the input data. The sample size can thus be adapted to
meet given performance goals. For the cases of very large
knowledge graphs, one could also focus only on a subset of
relevant types.

The constraints used by ColNet, as described in Section
4.4, directly affect the score associated to a semantic type for
the involved sample and has an impact on the overall score
of a semantic type for the column. Constraints obtained
during the user interaction could also be used to further
fine-tune the involved classifiers and thus adapt their scores.
This would affect the performance, but could potentially
improve the quality of recommendations.

APPENDIX C
OUTLIER AI ASSISTANT

The AI assistants discussed so far are examples of tools
based on sophisticated machine learning methods. Such
tools allow the analyst to tackle the most challenging data
wrangling tasks. However, data analysts also regularly need
to complete more mundane tasks, such as identifying outlier
values based on standard deviation, removing exact dupli-
cates or correcting simple typos. Such mundane tasks would
typically be done without dedicated tool support. However,
the fact that AI assistants are very easy to build makes it
practical to develop dedicated interactive tools to support
mundane tasks that are based on a simple algorithms.

Formal definition
We first discuss a simplified formal model of an AI assistant
for removing outlier values based on the m-sigma rule.
Given a sequence of values x1, . . . , xn with a mean x and a
standard deviation σ, the assistant identifies values outside
of the interval (x−mσ, x+mσ) for a multiplier m specified
by the analyst. It then offers the values outside of the range
to the analyst who can choose which of those should be
removed from the dataset. For simplicity, we describe a
version of the assistant where the input is a sequence of
values, corresponding to a data table with a single column.

The outlier assistant is not optimization-based. It offers
potential outliers as a result of the choicesX operation.
The user can then choose values to be removed. A human
interaction H is thus a set of values selected by the user. The
expressions are likewise just sets of values to be removed.
The bestX operation does not perform any inference and
simply returns the values selected by the user. The f op-
eration then actually removes the values from the dataset.
Assuming O is a set of outliers o1, . . . , on such that oi ∈ X
and oi ≤ x−mσ or oi ≥ x−mσ, the assistant is defined as:

f(e,X) = {xi ∈ X | xi /∈ e}
bestX(H) = H

choicesX(H) = H ∪ {o1}, . . . ,H ∪ {ok}
where o1, . . . , ok = O \H

The expression e is a set of values that the user selected for
removal. To apply the expression, the f function removes all
values from X that are also in e. Since human interactions
H and expressions e are the same, the bestX function
simply returns the human interaction H it receives as an
argument as the best cleaning script. Finally, the choicesX
operation takes previously selected values to be removed
H . It generates a list of choices by taking all outlier values
that are not already selected, i.e., O \ H , and adds each to
the already selected outliers to be removed.

The value of this example is two-fold. First, it imple-
ments a simple yet practical operation that data scientists
in the real world actually use. For example, the anomaly
detection in the Tundra Traits case study discussed in [35]
uses this approach with an 8σ threshold. Second, the ex-
ample shows the flexibility of our definition. It supports
optimization-based AI assistants, but also more manual
ones such as the Outlier assistant described here.

Removing aggregates

To illustrate the usefulness of simple AI assistants, we
developed a practical version of the AI assistant for outlier
detection based on the simple theoretical model presented
above. The assistant can be used for removing outlier rows,
for example when working with datasets that combine raw
and aggregate data. This example illustrates the possibilities
of the AI assistant ecosystem. It is a simple assistant that
solves a specific problem, but does so very effectively.

The assistant takes a data table with a mix of numerical
and categorical columns. It identifies rows that contain nu-
merical outliers (using a simple m-sigma rule) and collects
values of categorical columns in those rows. The user can
choose any of those as conditions for filtering rows in the
dataset. The user can choose to remove all rows where a
selected categorical column has a particular value that has
been found among the outlier rows.

Consider data on aviation incidents published by Euro-
stat4 (Table 3). Each row shows the number of people injured
in accidents that involve an airplane registered in a country
specified by c_regis that occurred in a country given
in the c_geo column. However, the dataset also contains
aggregate rows. The last row in the sample shows the total
number of injuries in the EU, which is obtained as a sum
of all the other rows (some not shown). Such aggregate
rows are not uncommon in real-world datasets, and can
significantly affect an analysis if they are not identified.

To work with the data, the analyst first wants to remove
the aggregate rows. When she invokes the AI assistant for
outlier detection on the aviation accidents dataset, she gets
four recommendations related to the c_regis column and
three recommendations related to the c_geo column. The
assistant offers a choice of transformations that remove rows
where c_regis is EU28, FR, CH or NEASA and rows where
c_geo is EU28, OTH or FR. With two human interactions,
the analyst can choose the desired two filters and remove
all aggregates (either of the columns has a value EU28) from
the dataset. The other choices are not relevant, but indicate
regions that are worthy of further investigation, e.g., France

4. https://ec.europa.eu/eurostat/web/transport/data/main-tables

JOURNAL 16

TABLE 3
Subset of Eurostat data on aviation accidents.

c_regis c_geo 2017 2016 2015 2014

UK CZ 0 0 0 0
UK IT 0 0 1 0
UK SE 0 0 0 0
UK UK 3 0 2 2
EU28 EU28 18 7 22 31

(with higher than average number of accidents) and planes
registered outside of the EU (denoted by NEASA).

In R or Python, the analyst could write code to identify
rows with values outside of the m-sigma range. She might
notice the EU28 value and write code to remove rows where
c_geo or c_regis are EU28. This is easy for a seasoned
programmer, but our AI assistant allows a non-programmer
to solve the problem with two simple interactions.

In Trifacta [9] the analyst can use the data quality bar
and histogram (automatically displayed for each column) to
locate unusual values in each column data. The “Column
Details” window also offers a list of outlier values (identi-
fied based on proprietary chosen quantile in each column).
Based on the outlier values, the analyst can construct a
filter for removing rows, e.g., where the value for the 2017
column is between 15 and 25. However, Trifacta operates
on individual columns and so it is not immediately obvious
that the outliers represent aggregates with a special value in
separate c_regis and c_geo columns.

APPENDIX D
SYSTEM OVERVIEW

AI assistants are available as an extension for the industry
standard JupyterLab notebook system. Figure 1 shows the
use of the datadiff AI assistant for solving the problem
discussed in Section 5.1.1.

As discussed in Section 3.1, the fact that AI assistants use
a unified interface means that a single extension provides
access to a wide range of AI assistants available in a single
data analysis environment. Our support for AI assistants
utilizes the Wrattler extension [41] for JupyterLab. In this
section, we discuss the system architecture and implemen-
tation of the abstract interface of AI assistants. The code for
the Wrattler extension and several of the AI assistants is
available at: https://github.com/wrattler.

System architecture. Our implementation leverages Wrat-
tler [41], which extends JupyterLab with a new kind of
polyglot notebook that can contain multiple kinds of cells.
The Wrattler architecture, including the support for AI
assistants, is illustrated in Figure 3. Wrattler separates the
notebook (running in a web browser), from language run-
times and a data store (running on a server). Our extension
implements a language plugin for Wrattler that defines a
new “AI assistant” cell type and facilitates access to indi-
vidual AI assistants. The new cell type uses a graphical user
interface that allows users to choose the assistant they want
to invoke, as well as select the input data. When the cell is
evaluated, it invokes the AI assistant, previews the results
and allows the user to select one of the options generated
by the choicesX operation of the AI assistant.

Language runtime(s) Data store

Notebook AI assistants service datadiff

CleverCSV

Fig. 3. AI assistants in Wrattler (partly adapted from [41]). Wrattler keeps
all data in data store on the server. The notebook communicates with
language plugins and data store via HTTP (solid lines). We add a new
service that facilitates access to AI assistants, which communicates with
individual assistants using standard input/output (dashed lines).

Common interface and integration. Our implementation
aims to make it easy to create new AI assistants. For this rea-
son, AI assistants use a shared and easy-to-implement com-
munication interface—standard input and output—together
with a simple protocol that implements the abstract defini-
tion.

Definition 3.1 defines an AI assistant formally in terms
of operations f , bestX , and choicesX . In our implementa-
tion, AI assistants are command-line applications that read
commands (corresponding to the operations) from standard
input and respond via standard output. For example, our
JupyterLab integration calls datadiff to get completions
after the “Don’t transform LLU” constraint is selected by
the analyst as follows (> marks standard input, < marks
standard output):

1 > reference=/temp/bb15nice.csv,input=/temp/bb14.csv
2 > choices
3 > notransform(LLU)
4

5 < Don’t transform ’Urban.rural’
6 < notransform(LLU)/notransform(Urban.rural)
7 < Don’t match ’Nation’ and ’Urban.rural’
8 < notransform(LLU)/nomatch(Nation,Urban.rural)
9 <

The first three lines invoke the choicesX operation by spec-
ifying input data (line 1), operation name (line 2) and past
human interactionsH (line 3). The response generates possi-
ble human interactions followed by a blank line. The actual
implementation returns multiple choices, but we list only
the first two in the above example. Each choice consists of a
name, followed by a new human interaction. Here, the hu-
man interactions are encoded as constraints, separated by a
slash. The analyst previously selected the notransform(LLU)
constraint, so the two offered human interactions include
this and add one other constraint. The first one, named
“Don’t transform Urban.rural” (line 5), is represented as two
constraints (line 6), the existing notransform(LLU) constraint
and a newly added notransform(Urban.rural) constraint. The
second human interaction (lines 7-8) similarly represents
two constraints, the existing notransform(LLU) constraint
and a newly added nomatch(Nation,Urban.rural) constraint.

We chose standard input/output as our interface, be-
cause it makes it possible to implement AI assistants in
any programming language. For example, the assistants pre-
sented in this paper have been implemented in R (datadiff),
Python (CleverCSV, ptype), and F# (Outlier).

JOURNAL 17

TABLE 4
An overview of datasets used throughout the paper and their sources.

Name Description Use Source Size

Broadband (2014) UK home broadband performance datadiff motivation Ofcom [25] 32 cols, 1971 rows
Broadband (2015) UK home broadband performance datadiff motivation Ofcom [25] 67 cols, 2802 rows
IMDB movies Classification and rating of 100 movies CleverCSV evaluation Kaggle (∗) 44 cols, 100 rows
Colors File names and RGB color codes CleverCSV scenario GitHub (†) 11 cols, 300 rows
Cylinder Bands Cylinder bands in rotogravure printing ptype scenario UCI [36] 40 cols, 512 rows
Corrupted UCI (1) Corrupted (abalone, adult, bank, car, iris) datadiff evaluation UCI [36] max 15 cols, 32,561 rows
Corrupted UCI (2) Corrupted (abalone, adult, bank, car) datadiff evaluation UCI [36] max 15 cols, 32,561 rows
CleverCSV failures Subset of data from Gov.uk and GitHub CleverCSV evaluation CleverCSV [5] 255 files
ptype failures Subset of data from Gov.uk and UCI ptype evaluation ptype [30] 43 columns
Aviation accidents EU aviation accidents per year outlier scenario Eurostat (‡) 32 cols, 3469 rows

(∗) https://github.com/alan-turing-institute/CleverCSV/blob/master/example/imdb.csv
(†) https://github.com/victordiaz/color-art-bits-
(‡) https://ec.europa.eu/eurostat/web/transport/data/main-tables

TABLE 5
A glossary of symbols and special identifiers used throughout the paper.

Symbol Scope Explanation

e, e∗ AI assistants Expressions (cleaning scripts) recommended by AI assistants; e∗ denotes the best script
X,Y AI assistants Input dataset X and output dataset Y
H,H0 AI assistants Past human interactions with the AI assistant; H0 denotes no prior interaction
f(e,X) AI assistants Operation that applies the expression e (cleaning script) to the input dataset X
bestX(H) AI assistants Operation that recommends the best expression for a given input, respecting past interactions
choicesX(H) AI assistants Operation that generates a sequence of options the analyst can choose from

QH(X, e), Q Optimization Objective function that assigns a score to an expression, w.r.t. past interaction (QH)
EH , E Optimization Set of permitted expressions; EH is restricted with respect to past human interaction
pH(X | e) Probabilistic Likelihood of the input data X given an expression e, w.r.t. past human interaction
pH(e) Probabilistic Distribution representing prior beliefs about probabilities of expressions

P datadiff A single patch that can be applied to a column of the dataset
c datadiff, CleverCSV A single constraint that can be added to H in order to influence the inference
validH datadiff, CleverCSV A predicate that determines if a patch or type respects past interactions (constraints)
τ ptype Inferred primitive type such as Boolean, integer, floating-point number, date or string
σ ColNet Inferred semantic type from a knowledge graph such as dbo:Company
S ColNet Set of sample values, drawn from a column of the input dataset
pσS ColNet Score of a sample S for a given semantic type σ in non-interactive mode
qσS,H ColNet Score of a sample S for a given semantic type σ; w.r.t past interactions

Part V

Publications: Data visualization

179

Chapter 12

Composable data visualisations

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/S0956796821000046

180

https://doi.org/10.1017/S0956796821000046

JFP 31, e13, 18 pages, 2021. c© The Author(s), 2021. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
doi:10.1017/S0956796821000046

F U N C T I O N A L P E A R L S

Composable data visualizations

T O M A S P E T R I C E K
School of Computing, University of Kent, Canterbury CT2 7NZ, UK

(e-mail: t.petricek@kent.ac.uk)

1 Introduction

Let’s say we want to create the two charts in Figure 1. The chart on the left is a bar chart that
shows two different values for each bar. The chart on the right consists of two line charts
that share the x axis with parts of the timeline highlighted using two different colors.

Many libraries can draw bar charts and line charts, but extra features like multiple bars
for each label, alignment of multiple charts, or custom color coding can only be used
if the library author already thought about your exact scenario. Google Charts (Google,
2020) supports the left chart (it is called Dual-X Bar Chart), but there is no way to add
a background or share an axis between charts. The alternative is to use a more low-level
library. In D3 (Bostock et al., 2011), you construct the chart piece by piece, but you have
to tediously transform your values to coordinates in pixels yourself. For scientific plots,
you could use ggplot2 (Wickham, 2016), based on the Grammar of Graphics (Wilkinson,
1999). A chart is a mapping from data to geometric objects (points, bars, and lines) and
their visual properties (x and y coordinate, shape, and color). However, the range of charts
that can be created using this systematic approach is still somewhat limited.

What would an elegant functional approach to data visualization look like? A functional
programmer would want a domain-specific language that has a small number of primitives

Fig. 1. Two charts about UK politics: comparison of election results from 2017 and 2019 (left) and
GBP/USD exchange rate with highlighted areas before and after the 23 June 2016 Brexit vote.

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

2 T. Petricek

Fig. 2. On a continuous scale (above), an exact position is determined by a number. On a categorical
scale (below), an exact position is determined by the category and a number between 0 and 1.

that allow us to define high-level abstractions such as a bar chart and that uses domain
values such as the exchange rate, rather than pixels, in its basic building blocks.

As is often the case with domain-specific languages, finding the right primitives is more
of an art than science. For this reason, we present our solution, a library named Compost,
as a functional pearl. We hope to convince the reader that Compost is elegant and we
illustrate this with a wide range of examples. Compost has a number of specific desirable
properties:

• Concepts such as bar charts, line charts, or charts with aligned axes are all expressed
in terms of more primitive building blocks using a small number of combinators.

• The primitives are specified in domain terms. When drawing a line, the value of a
y coordinate is an exchange rate of 1.36 USD/GBP, not 67 pixels from the bottom.

• Common chart types such as bar charts or line charts can be easily captured as
high-level abstractions, but many interesting custom charts can be created as well.

• The approach can easily be integrated with the Elm architecture (Czaplicki, 2012)
to create web-based charts that involve animations or interaction with the user.

The presentation in this paper focuses on explaining the primitives and combinators of
the domain-specific language. We outline the structure of an implementation but omit the
details; filling those in merely requires careful thinking about geometry and projections.

Compost is available as open source at http://compostjs.github.io. It is implemented
in F# but is available as a plain JavaScript library thanks to the Fable F# to JavaScript
compiler. The core logic consists of 800 lines of code and depends on the virtual-DOM
library (http://npmjs.com/package/virtual-dom) for the implementation of the interactive
features, making it easily portable to other functional programming languages.

2 Basic charts: Overlaying chart primitives

We introduce individual features of the Compost library gradually. The first important
aspect of Compost is that properties of shapes are defined in terms of domain-specific
values. In this section, we explain what this means and then use domain-specific values to
specify the core part of the UK election results bar chart.

2.1 Domain-specific values

In the election results chart in Figure 1 (left), the x axis shows categorical values represent-
ing the political parties such as Conservative or Labour. The y axis shows numerical values

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 3

Category c
Ratio r
Number n
Text t
Color γ

Value v = cat c, r
| cont n

Shape s = line γ , [vx1, vy1, . . . , vxn, vyn]
| fill γ , [vx1, vy1, . . . , vxn, vyn]
| text γ , vx, vy, t
| bubble γ , vx, vy, nw, nh

| overlay [s1, . . . , sn]
| axisl/r/t/b s
| padding nt, nr, nb, nl, s

Fig. 3. Core primitives of the Compost domain-specific language. Values v are either categorical or
continuous; a shape s is then defined as a simple recursive algebraic data type.

representing the number of seats won such as 365 MPs. When creating data visualizations,
those are the values that the user needs to specify. This is akin to most high-level charting
libraries such as Google Charts, but in contrast with more flexible libraries like D3.

Our design focuses on two-dimensional charts with x and y axes. Values mapped to
those axes can be either categorical (e.g. political parties, and countries) or continuous
(e.g. number of votes and exchange rates). The mapping from categorical and continuous
values to positions on the chart is done automatically. We discuss this in Section 2.4.

For example, in the UK election results chart, the x axis is categorical. The library auto-
matically divides the available space between the six categorical values (political parties).
The value Green does not determine an exact position on the axis, but rather a range.
To determine an exact position, we also need to attach a value between 0 and 1 to the
categorical value. This identifies a relative position in the available range.

Figure 2 illustrates the two kinds of values using the axes from the UK election results
chart. In Figure 3, we define a value v as either a continuous value cont n containing any
number n or a categorical value cat c, r consisting of a categorical value c and a number r
between 0 and 1. As discussed in Section 2.5, continuous and categorical values can also
be annotated with units of measure to make the values more descriptive.

2.2 Basic primitives and combinators

Compost is an embedded domain-specific language, implemented as a set of functions. In
the subsequent code samples, we will use color to distinguish primitives of the Compost
language, such as overlay or cat from primitives of the host language such as let or for.

A chart element is represented by a shape s, as defined in Figure 3. A primitive shape
can be a text label, a line connecting a list of points, a filled polygon defined by a list of
points, or a bubble at a given point with a given width and height. The position of points is
specified by x and y coordinates, which can be either categorical or continuous values. For
text, line, polygon, and bubble, we also include a parameter γ that specifies the element
color. The width and height of a bubble is given in pixels rather than in domain units.

Figure 3 also defines three combinators. The most important is overlay, which over-
lays given shapes. When doing this, Compost infers the range of values on the x and y
axes and calculates suitable projections using a method discussed in the next section. The
padding combinator adds padding around a specified shape and axis adds an axis showing

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

4 T. Petricek

Fig. 4. Simple chart showing the UK election results; using automatically inferred scales (left) and
using rounded Y scale and explicitly defined (reordered) X scale (right).

the inferred scale on the left, right, top, or bottom of a given shape. Using those primitives,
we can construct the simple UK election results bar chart in Figure 4 (left):

let conservative, labour =
fill #0000ff, [(cat Conservative, 0), (cont 0), (cat Conservative, 0), (cont 365),

(cat Conservative, 1), (cont 365), (cat Conservative, 1), (cont 0)],
fill #ff0000, [(cat Labour, 0), (cont 0), (cat Labour, 0), (cont 202),

(cat Labour, 1), (cont 202), (cat Labour, 1), (cont 0)]

axisl (axisb (overlay [conservative, labour]))

We use the let construct of the host functional language to structure the code. The chart
specification overlays two bars of different colors and then adds axes to the bottom and
left of the chart. The two bars are filled rectangles defined using four corner points. The
y coordinates are specified as continuous values, while the x coordinates are categorical.
For the Conservative party, two of the points have the y coordinate set to cont 0 (bottom
of the bar) and two have the y coordinate set to cont 365 (top of the bar). The two x
coordinates are the start and the end of the range allocated for the Conservative category,
that is, cat Conservative, 0 on the left and cat Conservative, 1 on the right.

Extending the snippet to generate a grouped bar chart that shows two results for each
party as in Figure 1 is not much harder. Given a party p, we need to generate two rect-
angles, one with x coordinates cat p, 0 and cat p, 0.5 and the other with x coordinates
cat p, 0.5 and cat p, 1. In the following snippet, we use a for comprehension to generate
the list. All remaining constructs are primitives of the Compost domain-specific language.
Assuming elections is a list of election results containing a five-element tuple consisting of
a party name, colors for 2017 and 2019, and results for 2017 and 2019, we create the chart
using:

axisl (axisb (overlay [
for party, clr17, clr19, mp17, mp19 in elections →

padding 0, 10, 0, 10, overlay [
fill clr17, [(cat party, 0), (cont 0), (cat party, 0), (cont mp17),

(cat party, 0.5), (cont mp17), (cat party, 0.5), (cont 0)],
fill clr19, [(cat party, 0.5), (cont 0), (cat party, 0.5), (cont mp19),

(cat party, 1), (cont mp19), (cat party, 1), (cont 0)]]]))

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 5

Aside from iterating over all available parties and splitting the bar, the example also adds
padding around the bars, which is specified in pixels. A similar result could be be achieved
by drawing a bar using a range from 0.05 to 0.5, but specifying padding precisely in pixels
is sometimes preferable. The chart is still missing a title, which we add in Section 4.

2.3 Choosing the level of language abstraction

Perhaps the most important aspect of the design of any domain-specific language is the
level of abstraction it uses. The bar chart example discussed in the previous section illus-
trates the choice made in Compost. On the one hand, Compost gives us flexibility by letting
us compose charts from shapes. On the other hand, Compost limits what we can do using
two-dimensional space with positions determined by categorical or continuous values. In
other words, the Compost design lies in the middle of a broader spectrum.

An example of a more general domain-specific language is the Pan language (Elliott,
2003) for producing images. Pan represents images as functions from a 2D point to a
color. This makes it possible to create powerful combinators, for example, polar image
transformation, but it makes it harder to express logic important for charting, for exam-
ple, automatic alignment of shapes defined in terms of categorical values. Compost makes
it easy to put two bars side by side in a bar chart, but harder to define generic combinators
for aligning images.

An example of a less general domain-specific language is the Haskell Chart library
(Docker, 2020). Haskell Chart provides a wide range of plots (such as lines, candles, areas,
points, error bars, pies, etc.), but those can only be composed in limited ways by overlay-
ing them or arranging them in a grid. The language is closer to the domain of the most
common applications, but it places more restrictions on what can be expressed.

The design of the Compost domain-specific language aims to capture the key principles
shared by most charts but avoid using a long list of different plot types. Different types of
charts are all produced by composing shapes, but the ways in which shapes can be com-
posed and transformed are limited to those that are needed for typical charts. We discuss
the limitations of this approach in more detail in Section 7.

2.4 Inferring scales and projections

We follow the terminology of Vega (Satyanarayan et al., 2015) and use the term scale to
refer to the mapping of values to positions on a screen; a coordinate is a value representing
a position on a scale and the term axis is used to refer to the visual representation of a scale.

Scales are an important concept in Compost. When composing shapes using the overlay
primitive, the user does not need to specify how to position the child elements relatively to
each other. The Compost library positions the elements automatically. This is done in two
steps. During pre-processing, Compost infers the scales for x and y axes. A scale represents
the range of values that needs to fit in the space available for the chart. When rendering a
shape, Compost projects domain-specific values to the available screen space based on the
inferred scale. A scale l is defined in Figure 5. A continuous scale is defined by a minimal
and maximal value that need to be mapped to the available chart space. A categorical scale
is defined by a list of individual categorical values. Note that we do not need minimal and

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

6 T. Petricek

Scale l = continuous nmin, nmax | categorical [c1, . . . , ck]

Fig. 5. A scale l can be continuous, defined by a range, or categorical, defined by a list of values.

maximal ratios of the used categorical values as Compost will use equal space for each
category, regardless of where in this space a shape needs to appear.

Scale inference is done by a simple recursive function that walks over the given shape
and constructs two scales for the x and y axis, using the x and y coordinates that appear
in the shape. Most of the work is done by a simple helper function that takes two scales,
l1 and l2, and produces a new scale that represents the union of the two:

union (continuous nl, nh) (continuous n′
l, n′

h) =
continuous min(nl, n′

l), max(nh, n′
h)

union (categorical [c1, . . . , cp]) (categorical [c′
1, . . . , c′

q]) =
categorical [c1, . . . , cp] @ [c′

i | ∀i ∈ 1 . . . q, �j.cj = c′
i]

When unioning two continuous scales, the minimum and maximum of the resulting scale is
the smallest and largest of the two minimums and maximums, respectively. When union-
ing two categorical scales, we take all values of the first scale and append all values of
the second scale that do not appear in the first one. Note that this means that the order
of categorical values in a scale depends on the order in which they appear in the shape.
(A possible improvement to Compost would be to support ordinal values, which are cat-
egorical values with a well-defined ordering.) It is also worth noting that a categorical
scale cannot be combined with a continuous scale. In other words, mixing categorical and
continuous values in a single scale results in an error.

The scales inferred during pre-processing are later used when rendering a shape. We
discuss the implementation in Section 6. The key operation is projection which, given
a coordinate, a scale, and an area on the screen, produces a position on the screen. For
a continuous scale, the projection is a linear transformation. For categorical scale with
k values, we split the available chart space into k equally sized regions and then map a
categorical value cat c, r to the region corresponding to c according to the ratio r.

2.5 Types and units of measure

We introduce the Compost domain-specific language as untyped, but there are some
obvious ways in which types can make composing charts in Compost safer. First, a type
representing a shape could specify whether the x and y axes represent categorical or
continuous values. This would rule out mixing of different values on a single scale and
guarantee that the union operation, sketched in the previous section, is never called in a
way leading to an undefined result. Second, the type of values mapped to an axis could
be further annotated with units of measure (Kennedy, 2009). Using the F# notation where
n u is a number n with unit u, an axis containing a value cont 317 mp would then be
incompatible with an axis containing a value cont 1.32 gbp/usd .

We only outline the type system here. There are two kinds of types: σ is a type of values
and τ is a type of shapes. Assuming u denotes a unit of measure, the types are defined as:

σ = Cat u | Cont u τ = Shape σx, σy

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 7

min max

Fig. 6. Additional combinators for controlling and nesting scales, extending earlier definition of s.

Correspondingly, there are two kinds of typing judgments; v � σ indicates the type of a
value, while s � τ indicates the type of a shape. The typing rules for two of the basic chart
primitives, line and overlay look as follows:

vxi � σxvyi � σy

line γ , [vx1, vy1, . . . , vxn, vyn] � Shape σx, σy

si � Shape σx, σy

overlay [s1, . . . , sn] � Shape σx, σy

The rule for line ensures that all X and Y values have the same types, σx and σy, respec-
tively, and infers Shape σx, σy as the type of the shape. The rule for overlay ensures that all
composed shapes have the same type, including the type of x and y scales.

3 Advanced charts: Controlling scale composition

Most charts have one x and one y scale that are determined by the values the chart shows,
but there are interesting exceptions. The chart in Figure 1 (right) has two different y axes,
one for GBP/USD and one for GBP/EUR. In the next two sections, we look at three
combinators that control the scale inference process and what flexibility this enables.

3.1 Defining nice scale ranges

The automatic scale inference often results in scales where the maximum is a non-round
number. This leads to charts that fully utilize the available space but may not be easy to
read. The first two primitives, shown in Figure 6 (left), allow the chart designer to adjust the
automatically inferred range of scales. The operations can be applied to either the x scale
or the y scale, which is indicated by the x/y subscript. The roundScale primitive takes the
inferred x or y scale of the shape s and, if it is a continuous scale, rounds its minimal and
maximal values to a “nice” number. For example, if a continuous scale has minimum 0
and maximum 365, the resulting scale would have a maximum 400. For categorical scale,
the operation does not have any effect. The explicitScale operation replaces the inferred
scale with an explicitly provided scale (the type of the inferred scale has to match with the
type of the explicitly given scale). For example, the chart in Figure 4 (right) is constructed
using the following code (reusing the conservative and labour variables defined earlier):

axisl (axisb (roundScaley (explicitScalex (categorical [Labour, Conservative]),
overlay [conservative, labour])))

Reading the code from the inside out, the snippet first overlays the two colored bars defined
earlier; it then replaces the X axis with an explicitly given one that changes the order of
the values. As a result, the bar for Labour will appear on the left, even though the value
comes later in the list of overlaid chart elements.

The code next uses roundScale to automatically round the minimum and maximum of
the continuous Y scale (showing the total number of seats). Finally, we add axes around the

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

8 T. Petricek

Fig. 7. A continuous scale with values from 0 to 6, nested in another scale.

shape, producing a usual labeled chart. It is worth noting that axis and roundScale could be
implemented as derived operations; roundScale would need to infer the scale of the nested
shape and then insert explicitScale with a rounded number; axis would also need to infer
the scales and then generates labels and lines in suitable locations.

3.2 Nested scales

The most interesting primitive for controlling scale composition is nestx/y. As with other
primitives like padding, the primitive takes a shape with some additional parameters and
defines a new shape. Its behavior is similar to that of the SVG viewport (Dahlström et al.,
2011). The nest primitive takes two values, vmin and vmax, and a shape s as arguments
and nests the scale of the shape s inside the region defined by vmin, vmax. When inferring
scales of shapes, the scale of nestx/y vmin, vmax, s will be a categorical or continuous scale
constructed from the values vmin and vmax, regardless of the values that are used inside the
shape s. The chart space between vmax and vmin will then be used to render the nested shape
s using its inferred scale. In other words, the operation defines a virtual coordinate system
that exists only inside the newly created shape but is invisible to anything outside of the
shape. An example of nesting is shown in Figure 7. Here, a chart with a continuous scale
from 1.1 to 1.4 (e.g. GBP/EUR exchange rates) is nested in the left half of another chart,
which has a continuous scale from 0 to 100.

The nesting of scales can be used in a variety of ways. For example, to nest a scatter
plot showing individual data points inside a bar of a histogram, we would use cat ABC, 0
and cat ABC, 1 as the points that define the start and the end of the region. A simpler
use case for the combinator is showing multiple charts in a single view. For example,
the motivating example in Figure 1 (right) compares aligned line charts of exchange rates
for two different currencies. Assuming gbpusd and gbpeur are lists containing days as x
values and exchange rates as y values, we can construct a simple chart with two line charts,
as shown in Figure 8 (left), using:

overlay [nesty (cont 0), (cont 50), (axisl (axisr (axisb (line #202020 gbpusd))))
nesty (cont 50), (cont 100), (axisl (axisr (axisb (line #202020 gbpeur))))]

In this example, the x scale shows the days of the year. This scale is shared by both of
the charts. Indeed, if data were only available for the second half of the month for one
of the charts, we would want the line to start in the middle of the chart. However, the y
scale needs to be separate for each of the charts. To achieve this, we use nesty. The scale
of the inner shapes is continuous, from the minimal to the maximal exchange rate for a
given period. The outer scale is determined by the explicitly defined points. For the upper
chart, these are cont 0 and cont 50; for the lower chart, these are cont 50 and cont 100.
The continuous values define a scale that only contain two shapes – one in the upper half

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 9

Fig. 8. Two charts showing currency exchange rates with a shared X scale and separate Y scales.

and one in the lower half – and so the three numbers could have equally been, for example,
0, 1, 2. The outer scale used here is synthetic and it is not aligned with other chart elements.
A chart that does not have synthetic outer scale is pairplot, discussed in the next section.

For completeness, the following code snippet shows how to construct the full currency
exchange rate chart shown in Figure 8 (right), including the blue and red background:

let xrate (lo, hi) rates = overlay [
fill #1F77B460, [cont 0, cont lo, cont 16, cont lo, cont 16, cont hi, cont 0, cont hi],
fill #D6272860, [cont 16, cont lo, cont 44, cont lo, cont 44, cont hi, cont 16, cont hi],
line #202020 rates]

overlay [nesty (cont 0), (cont 50), (axisl (axisr (axisb (xrate (1.25, 1.50) gbpusd))))
nesty (cont 50), (cont 100), (axisl (axisr (axisb (xrate (1.15, 1.30) gbpeur))))]

Here, we use the let binding of the host language to define a function that takes the data
rates together with the minimum and maximum. This is used for drawing two filled rectan-
gles, covering the first 16 days of the view in blue and the rest in red. The shapes combined
using overlay are rendered in the order in which they appear and so the line shape is last,
so that it appears above the background.

4 Standard charts: Defining new abstractions

The functional domain-specific language design makes it easy to define high-level chart
features and chart types, known from standard charting libraries, using the low-level
primitives of the core language. To illustrate this, we give two examples.

First, one last remaining feature of the two charts in Figure 1 is a chart title. This can be
added to any chart using the following derived combinator:

let title t s = overlay [
nestx (cont 0), (cont 100), (nesty (cont 0), (cont 15),

explicitScalex (continuous 0, 100), (explicitScaley (continuous 0, 100),
text #000000, (cont 50), (cont 50), t))

nestx (cont 0), (cont 100), (nesty (cont 15), (cont 100), s)]

We use let in the host language to define title as a function taking a title t and a shape s.
It overlays two shapes. To position the title above the chart, the first shape has an outer y
scale continuous 0, 15, while the second has an outer y scale continuous 15, 100. Similarly,
the outer x scale of both is continuous 0, 100. These are defined using nestx/y.

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

10 T. Petricek

Fig. 9. Sample charts built using derived abstractions; a scatter plot visualizing the Iris dataset with
a title (left) and a pairplot comparing two Iris features (right).

The second shape simply wraps the specified chart s to which we are attaching the title.
The first positions the text title in the middle of the available space. To do so, we explicitly
set the x and y scales inside the upper shape to continuous scales from 0 to 100 and then
position the text label in the middle, at a point (cont 50), (cont 50). We assume that the
text primitive centers the text, although the actual implementation also allows the user to
specify horizontal and vertical alignment. Figure 9 (left) shows a sample scatter plot chart
with a title created using the title combinator.

A more complex chart that can be composed using the Compost primitives is pairplot
from the seaborn library (Waskom et al., 2014). Pairplot visualizes pairwise relationships
between features of a dataset. An example using three features (sepal width, petal width,
and petal length) from the Iris dataset is shown in Figure 9 (right). A pairplot draws a grid
of charts, each visualizing the relationship between two numerical features. For distinct
features, pairplot shows a scatter plot using one feature for x values and the other for y
values. When the features are the same (the diagonal), it draws a histogram of the feature
values. A categorical feature can be used to determine the color of dots in the scatter plots.

To generate a pairplot, we use nest to overlay and align a grid of plots. Each of those
overlays a number of bubbles or filled shapes and adds left and bottom axis. As before,
we use let to define a function and list comprehensions to generate individual chart ele-
ments. We assume that data is a list of rows, attrs is a list of available attributes, and
get a r obtains the attribute a of a row r. We also assume the dataset contains the “color”
attribute:

let pairplot attrs data = overlay [
for x in attrs → for y in attrs →

nestx (cat x, 0), (cat x, 1), (nesty (cat y, 0), (cat y, 1), axisl (axisb

(if x �= y then overlay [for r in data →
bubble (get “color” r), (get x r), (get y r), 1, 1]

else overlay [for x1, x2, y in bins x data →
fill #808080 [x1, y, x2, y, x2, 0, x1, 0]])))]

As before, nest is essential for composing individual charts. Here, the points that determine
the locations of individual charts are categorical values defined by the attributes of the

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 11

Fig. 10. Additional combinators for mouse-based interaction, extending earlier definition of s.

dataset. The choice between two possible nested charts is made using the host language
if construct. Scatter plots are generated by overlaying bubbles with x and y coordinates
obtained using get x r and get y r. Histograms are composed from filled shapes. To obtain
their locations, we use a helper function bins x data, which returns a list of bins specified
by a triple consisting of a lower and an upper range x1, x2 and the count y.

The example shows that Compost is simple yet expressive. With just a few lines of
code, we are able to construct charts that, in other systems, require dedicated libraries. The
essential aspect of the language making this possible is the automatic inference of scales
and their mapping to the available space as well as the nest operation.

5 Interactive charts: Domain-specific event handling

Many data visualizations published on the web feature interactivity. Standard forms of
interactivity include animations, hover labels, or zooming. More interesting custom visu-
alizations include “You Draw It” introduced by the New York Times (Aisch et al., 2015).
The chart shows only the first half of the data, such as a timeline, and the reader has to
guess the second half before clicking a button and seeing the actual data. Standard forms
of interactivity are often supported by high-level libraries; Google Charts supports panning
using drag & drop, zooming to a selected chart range and animations. Custom interactiv-
ity is typically implemented using low-level libraries such as D3, but doing so requires
directly handling JavaScript events and modifying the browser DOM.

Compost uses the Elm architecture (Czaplicki, 2016) to support interactive data visual-
izations. In this model, an interactive visualization is described using a pair of user-defined
types and a pair of user-defined functions. The state type represents the current state of
what is displayed (e.g. animation step or selection) and the event type represents actions
that the user can perform (e.g. start an animation or draw a selection range). The two func-
tions use the state and event types. The view function creates a chart based on the current
state and the update function specifies how the state changes when an event occurs.

5.1 Domain-specific events

To support handling of mouse-based events, Compost adds three additional primitives to
the definition of shape, as shown in Figure 10. The three new primitives make it possible to
handle three common mouse events using custom functions λx y → e, specified in the host
language. The most interesting aspect is that the functions are given x and y coordinates of
the event specified in the domain units of the chart. This means that if the user clicks on the
bar representing the Conservative party in a bar chart, the values might be, for example,
cat Conservative, 0.75 for x and cont 120.5 for y .

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

12 T. Petricek

5.2 You Draw It data visualizations

To illustrate building interactive data visualizations using Compost, we look at one aspect
of “You Draw It.” We want to create a bar chart where the user can use drag & drop to
move individual bars. Figure 11 shows the interactive chart before and after an interaction.
The first step is to define types representing the state and events that can occur:

type State = bool ∗ (string ∗ int) list
type Event = Update of (string ∗ int) | Moving of bool

The state is a pair of a boolean, indicating whether the user is currently dragging, and a list
of key/value pairs, storing the number of seats for each political party. Two types of events
can occur in the visualization. First, the user may start or stop dragging, which is indicated
using Moving(true) and Moving(false), respectively. Second, the user may change a value
for a party, which is represented by the Update event.

The next part of the implementation is the update function which takes an old state
together with an event and produces a new state:

let update (_, s) (Moving(m)) = m, s
update (true, s) (Update(p, v)) = true, map (λ(k, o) → k, if k = p then v else o) s
update (m, s) (Update(_, _)) = m, s

The first case handles the Moving event, which replaces the first component of the state
tuple, that is, a flag indicating whether a mouse button is down. The next two cases handle
the Update event. The event carries two values, p and v, which represent the party (which
bar the user is dragging) and the new value (new number of seats). If the user is currently
dragging, we replace the value associated with the party p in the list s using the map
function. If the user is not currently dragging, the event is ignored.

Finally, the view function takes the current state and builds the data visualization using
the Compost domain-specific language. In addition, it also takes a parameter trigger, which
is an effectful function of type Event → unit that can be used to trigger events in handlers,
registered using primitives such as mouseMove. The trigger function is provided by the
Compost runtime. When it is invoked from an event handler, it takes the current state,
transforms it using the update function, sets the new state as the current state, and invokes
the view function to display the new state.

To build the bar chart in Figure 11, we use the same approach as in Section 2.2. The only
addition are the event handlers registered using mouseMove, mouseUp, and mouseDown:

let view trigger (_, state) =
axisl (axisb (explicitScaley (continuous 0, 400),

(mouseMove (λ (cat p, _) (cont v) → trigger(Update(p, v))),
(mouseUp (λ _ _ → trigger(Moving(true))),
(mouseDown (λ _ _ → trigger(Moving(false))), overlay [

for party, mps in state → padding 0, 10, 0, 10, (fill (color party),
[(cat party, 0), (cont 0), (cat party, 0), (cont mp),
(cat party, 0.5), (cont mps), (cat party, 0.5), (cont 0)])])))))

When the user interacts with the visualization created using Compost, the library trans-
lates the coordinates associated with events from pixels to domain-specific values. In case

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 13

Fig. 11. Interactive “You Draw it” data visualization. The user moves cursor to a bar (left), pushes
a mouse button, and drags the bar to the position that they think is the correct one (right).

of the above bar chart, when the user moves a mouse, the function registered using mouse-
Move is given a categorical value cat p, r as the x coordinate, and a continuous value cont v

as the y coordinate. It then takes p, which is the name of the party corresponding to the bar
and the value v corresponding to the number of seats and triggers the Update(p, v) event
to update the state. The handlers for mouseUp and mouseDown do not use the coordinates.
They simply switch the flag indicating whether the user is currently dragging or not.

The primitives for specifying mouse event handlers can be nested or appear in multiple
subshapes of the composed shape. This makes it possible to attach different event handlers
to different parts of a chart and get event coordinates in local units. In case of nesting, the
nested handler will capture events that occur in the space occupied by the shape it wraps,
but it will ignore events occuring outside of this area.

The pair of functions, update and view, together with an initial state is all that is needed
to create an interactive data visualization. Compost calls view each time the state changes
and uses virtual-dom to update the chart displayed in the browser. Although creating an
interactive visualization is more work than creating a static one, the domain-specific nature
of Compost is invaluable. We can simply take the values p and v produced by a mouse
event, use those to update the state and then, again, render an updated chart.

6 Implementation structure: Scale inference and rendering

Compost is an open-source library, implemented in the functional language F#. The full
source code can be found at http://github.com/compostjs. As is often the case with
functional domain-specific languages, the implementation is not difficult once we find the
right collection of basic primitives and the right structure for the implementation. This
largely applies to the Compost library and so we will not go into the implementation
details. It is, however, worth giving an outline of the implementation structure.

As mentioned in Section 2.4, the rendering of shapes proceeds in two stages. First, the
library infers the scales of a shape. When doing so, it also annotates some shapes with
additional information that is needed later for rendering. Second, the library projects the
shape onto an available space and produces the chart, represented as an SVG object.

6.1 Inferring the scales of a shape

In order to render a shape, we need to know the range of values that should appear on the
x and y axes. This is done by inferring a scale for each of the axes from the individual x

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

14 T. Petricek

and y coordinates that specify shape locations. As discussed earlier, a scale can be either
categorical (displaying only categorical values) or continuous (displaying only continuous
values). When inferring scales, we use two helper operations: union, discussed earlier,
combines two scales and singleton creates a scale from a single coordinate.

The operation that infers the scales of a shape is calculateScales. It takes a shape and
produces a pair of x and y scales, together with a transformed shape:

calculateScales : Shape → (Scale ∗ Scale) ∗ Shape

The operation does not need to transform the shape in most cases. The exception is the
shape nestx/y vmin, vmax, s. In this case, the returned scale is based solely on the values of
vmin and vmax. For rendering, we need to keep the inferred scales of the nested shape s. To
do so, the operation replaces the nestx/y shape with an auxiliary shape scaledNestx/y:

s = scaledNestx/y vmin, vmax, sx/y, s | (. . .)

There are two kinds of cases handled by calculateScales. For primitives, it constructs a pair
of scales from individual coordinates using union and singleton. For shapes containing a
subshape, the operation calculates the scales of a subshape recursively and then adapts
those somehow. To illustrate, we consider two interesting cases:

calculateScales (nestx vmin, vmax, s) =
let (sx, sy), s′ = calculateScales s
(union (singleton vmin) (singleton vmax), sy), scaledNestx vmin, vmax, sx, s′

calculateScales (overlay l) =
let scales, l′ = unzip (map calculateScales l)
let sx, sy = unzip scales
(reduce union sx, reduce union sy), overlay l′

When calculating the scales of the nestx, the function first calculates scales of the subshape
s recursively. The resulting y scale sy is returned as the result, while the x scale is obtained
from the two coordinates vmin and vmax. This is also the case where the shape is transformed
and the returned scaledNestx shape stores the inferred x scale sx of the subshape s. The
second example is the overlay case which recursively computes scales of all subshapes and
combines those using the list folding function reduce with union as an argument.

6.2 Projecting coordinates and drawing

The key operation that needs to be performed when drawing a shape is projecting coordi-
nates from domain-specific values to the screen coordinates. As we draw a shape, we keep
the x and y scale and the space in pixels that it should be drawn on. Initially, the x and
y scales are those inferred for the entire shape and the space in pixels is 0 . . . width and
0 . . . height where width × height is the size of the target SVG element.

The key calculation is done by the project function, which takes the space in pixels (as
a pair of floating point numbers representing the range), the current scale, and a domain-
specific value and produces a coordinate in pixels:

project : float ∗ float → Scale → Value → float

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 15

The function is only defined if the value and scale are compatible. As discussed in
Section 2.5, this could be guaranteed using a simple type system. If both are continuous,
the function performs a simple linear transformation. If both are categorical, the available
pixel space is divided into a equally sized bins, one for each categorical value on the scale,
and the value is then projected into the appropriate bin.

The drawing of shapes is done by a function that takes the available area as a quadruple
(x1, y1), (x2, y2) together with the x and y scale mapped onto the area and a shape to be
drawn. The result is a data structure representing an SVG document:

drawShape : (float ∗ float) ∗ (float ∗ float) → Scale ∗ Scale → Shape → Svg

For primitive shapes, the operation projects the coordinates using project and constructs
a corresponding SVG document. For shapes with subshapes, it calls itself recursively,
possibly with an adjusted scale or area. The two cases discussed earlier illustrate this:

drawShape a s (overlay l) =
concat (map (drawShape a s) l)

drawShape ((x1, y1), (x2, y2)) (sx, sy) (scaledNestx vmin, vmax, nsx, shape) =
let x′

1 = project (x1, x2) sx vmin

let x′
2 = project (x1, x2) sx vmax

drawShape ((x′
1, y1), (x′

2, y2)) (nsx, sy) shape

When drawing overlay, the function draws all subshapes onto the same area using the same
scales and then concatenates the returned SVG components using the concat helper. The
scaledNestx case is more illuminating. Here, we first use project to find the range x′

1, x′
2

corresponding to the domain values vmin and vmax. This defines the area corresponding
to the nested scale nsx, onto which the x coordinates in the subshape shape should be
projected. To do this, we recursively call drawShape but use x′

1 and x′
2 as the x coordinates

of the target area and nsx as the x scale. The y area and scales are propagated unchanged.

7 Limitations and future work

As discussed in Section 2.3, the Compost library chooses a level of abstraction that makes it
possible to express a wide range of charts but does not allow arbitrary image manipulation.
The examples discussed so far provide a good review of what can be expressed using
Compost. It is also worth considering what cannot currently be expressed. For many of the
current limitations, we also consider what additional primitive would address the problem.

7.1 Radial charts and image transformations

Compost cannot currently produce pie charts and other radial charts. This could be sup-
ported by defining a primitive polar that renders a shape s specified as a parameter using
a polar coordinate system instead of the default Cartesian system. Like the nest primitive,
this would create a new shape that occupies a newly defined chart region. The polar primi-
tive would make it possible to create pie charts, but also more elaborate Circos charts used
to visualize genomic data (Krzywinski et al., 2009).

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

16 T. Petricek

Radial charts provide a clear motivation for supporting polar geometries, but we do
not currently expect the need for more general image transformations such as those sup-
ported by Pan (Elliott, 2003). Those are useful for producing visually appealing images
but may not be necessary for data visualization. Arguably, we also do not expect the need
for more general layout combinators such as above or besides (Yorgey, 2012). Those can
be expressed elegantly using image transformations. In Compost, we can achieve similar
effect using nest and explicitScale, as shown when defining title in Section 4.

7.2 Combinations and transformations of scales

Another area in which Compost could be extended is to allow more flexible handling of
scales. Currently, categorical scales are mapped to bins of equal size and continuous scales
are mapped using a linear transformation. The current design does not make it possible to
use logarithmic scale or, for example, contracted axis where a subrange of values in the
middle is omitted. Both of these could be supported if Compost allowed the user to specify
a custom value transformation function.

Another interesting challenge is to allow overlaying of charts with multiple scales.
This can currently be done using overlay together with nest. However, a more principled
approach would be to allow the user to specify multiple, possibly named, scales for each
shape. The calculateScales operation discussed in Section 6.1 would then need to return a
list of scales rather than just a pair.

7.3 Controlling visual elements of a chart

There is also a number of occasions where the user might require more control over various
visual elements of the chart such as fonts, text alignment, or visual aspects of the automat-
ically generated axes. The current implementation of Compost already allows control over
fonts, font sizes, and text alignment, but we omit the details for brevity.

Controlling the visual aspects of axes is a more interesting problem. In fact, the axis
primitive described in this paper is not a primitive operation, but rather a derived one. It is
implemented by calculating the scales of the shape specified as an argument and overlaying
it with lines (for axes and grid), text elements (for labels), and adding a padding. The
current implementation does not allow much customization, but the user can look at the
implementation and easily create their own version, much like they can create their own
version of the title operation described in Section 4.

8 Conclusions

This paper presents a functional take on the problem of designing easy to use, but flexible
abstractions for composing data visualizations. We hope to find a sweet spot between high
level, but inflexible approaches, and low level, but hard to use approaches.

Most work in this space is based on Grammar of Graphics (Wilkinson, 1999), design-
ing more or less complex and powerful variants (Stolte et al., 2002; Wickham, 2010;
Satyanarayan et al., 2015, 2016). In Grammar of Graphics, a chart is a mapping from

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Functional Pearls 17

data to chart elements and their visual attributes. In contrast, in Compost, the mapping is
specified in the host programming language and a chart is merely a resulting data type
describing the visual elements using domain-specific primitives.

Our approach is very flexible as it lets the user compose primitive visual elements in any
way they want; it lets them define their own high-level abstractions and it also integrates
well with reactive programming architectures to support interactive data visualizations.

In this paper, we focus on presenting the core ideas behind Compost. However, much
remains to be explored, both in terms of finding the best set of primitives and in terms
of their language integration. First, we only support categorical and continuous values,
but there are also ordinal values (which cannot be compared, but can be sorted). Second,
some of our primitives, namely axis and roundScale, could be implemented as derived
operations, but we treat those as built-in for simplicity. Third, we only treat x and y as
scales, but we could similarly treat other visual features (colors of bars and size of bubbles)
as scales, which would allow a more high-level specification of certain charts.

Acknowledgements

The Compost library is the result of my prolonged effort to create an elegant charting API
for F#, which was supported, at various stages, by Don Syme at Microsoft Research and
Howard Mansell at BlueMountain Capital. The idea of Compost first came together in dis-
cussion with Mathias Brandewinder and was (much much later) implemented thanks to the
support of Google Digital News Initiative and The Alan Turing Institute. The final moti-
vation for this paper was an invitation to talk at the Lambda Days conference in Kraków
and the positive comments from the attendees. Finally, the anonymous referees provided
valuable feedback that made this a better paper.

Supplementary materials

For supplementary material for this article, please visit http://doi.org/10.1017/
S0956796821000046

Conflicts of Interest

None.

References

Aisch, G., Cox, A. & Quealy, K. (2015) You Draw it: How Family Income Predicts
Children’s College Chances. New York Times. Accessed May 24, 2020. Available at:
https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects
-childrens-college-chances.html.

Bostock, M., Ogievetsky, V. & Heer, J. (2011) D3 data-driven documents. IEEE Trans. Visualization
Comput. Graphics 17(12), 2301–2309.

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

18 T. Petricek

Czaplicki, E. (2012) Elm: Concurrent FRP for Functional GUIs. Senior Thesis, Harvard University.
Available at https://elm-lang.org/assets/papers/concurrent-frp.pdf.

Czaplicki, E. (2016) A Farewell to FRP: Making Signals Unnecessary with The Elm Architecture.
Accessed May 24, 2020. Available at: https://elm-lang.org/news/farewell-to-frp.

DahlstrÃűm, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C., Schepers, D. & Watt, J. (2011)
Scalable Vector Graphics (svg) 1.1, 2nd ed. W3C Recommendation. Accessed May 24, 2020.
Available at: http://www.w3.org/TR/2011/REC-SVG11-20110816/.

Docker, T. (2020) Chart: A Library for Generating 2D Charts and Plots. Haskell Hackage. Accessed
December 9, 2020. Available at: https://hackage.haskell.org/package/Chart.

Elliott, C. (2003) Functional images. In The Fun of Programming, Chapter 7, Gibbons, J. &
de Moor, O. (eds). Palgrave.

Google. (2020) Google Charts: Interactive Charts for Browsers and Mobile Devices. Google.
Accessed May 24, 2020. Available at: https://developers.google.com/chart.

Kennedy, A. (2009) Types for units-of-measure: Theory and practice. In Central European
Functional Programming School. Springer, pp. 268–305.

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. & Marra,
M. A. (2009) Circos: An information aesthetic for comparative genomics. Genome Res. 19(9),
1639–1645.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K. & Heer, J. (2016) Vega-lite: A grammar of
interactive graphics. IEEE Trans. Visualization Comput. Graphics 23(1), 341–350.

Satyanarayan, A., Russell, R., Hoffswell, J. & Heer, J. (2015) Reactive Vega: A streaming dataflow
architecture for declarative interactive visualization. IEEE Trans. Visualization Comput. Graph.
22(1), 659–668.

Stolte, C., Tang, D. & Hanrahan, P. (2002) Polaris: A system for query, analysis, and visualization of
multidimensional relational databases. IEEE Trans. Visualization Comput. Graphics 8(1), 52–65.

Waskom, M., Botvinnik, O., Hobson, P., Warmenhoven, J., Cole, J. B., Halchenko, Y., Vanderplas,
J., Hoyer, S., Villalba, S. & Quintero, E. (2014) Seaborn: Statistical Data Visualization. Accessed
May 24, 2020. Available at: https://seaborn.pydata.org/.

Wickham, H. (2010) A layered grammar of graphics. J. Comput. Graphical Stat. 19(1), 3–28.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer.
Wilkinson, L. (1999) The Grammar of Graphics. New York: Springer-Verlag.
Yorgey, B. A. (2012) Monoids: Theme and variations (functional pearl). In Proceedings of the 5th

ACM SIGPLAN Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September
2012, Voigtländer, J. (ed). ACM, pp. 105–116.

https://doi.org/10.1017/S0956796821000046 Published online by Cambridge University Press

Chapter 13

Linked visualizations via Galois dependencies

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisationsvia Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/
10.1145/3498668

199

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668

7

Linked Visualisations via Galois Dependencies

ROLY PERERA∗, The Alan Turing Institute, UK
MINH NGUYEN, University of Bristol, UK
TOMAS PETRICEK†, University of Kent, UK
MENGWANG, University of Bristol, UK

We present new language-based dynamic analysis techniques for linking visualisations and other structured
outputs to data in a fine-grained way, allowing users to explore how data attributes and visual or other output
elements are related by selecting (focusing on) substructures of interest. Our approach builds on bidirectional
program slicing techiques based on Galois connections, which provide desirable round-tripping properties.
Unlike the prior work, our approach allows selections to be negated, equipping the bidirectional analysis with
a De Morgan dual which can be used to link different outputs generated from the same input. This offers a
principled language-based foundation for a popular view coordination feature called brushing and linking
where selections in one chart automatically select corresponding elements in another related chart.

CCS Concepts: • Theory of computation→ Program semantics.

Additional Key Words and Phrases: Galois connections; data provenance

ACM Reference Format:
Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked Visualisations via Galois Depen-
dencies. Proc. ACM Program. Lang. 6, POPL, Article 7 (January 2022), 29 pages. https://doi.org/10.1145/3498668

1 INTRODUCTION
Techniques for dynamic dependency analysis have been fruitful, with applications ranging from
information-flow security [Sabelfeld and Myers 2003] and optimisation [Kildall 1973] to debugging
and program comprehension [De Lucia et al. 1996; Weiser 1981]. There are, however, few methods
suitable for fine-grained analysis of richly structured outputs, such as data visualisations and
multidimensional arrays. Dataflow analyses [Reps et al. 1995] tend to focus on analysing variables
rather than parts of structured values. Where-provenance [Buneman et al. 2001] and related data
provenance techniques are fine-grained, but are specific to relational query languages. Taint tracking
[Newsome and Song 2005] is also fine-grained, but works forwards from input to output. For many
applications, it would be useful to be able to focus on a particular part of a structured output, and
have an analysis isolate the input data pertinent only to that substructure.
This is a need that increasingly arises outside of traditional programming. Journalists and data

scientists use programs to compute charts and other visual summaries from data, charts which must
be interpreted by colleagues, policy makers and lay readers alike. Interpreting a chart correctly
∗Also with University of Bristol.
†Also with The Alan Turing Institute.

Authors’ addresses: Roly Perera, The Alan Turing Institute, London, UK, rperera@turing.ac.uk; Minh Nguyen, min.nguyen@
bristol.ac.uk, University of Bristol, Bristol, UK; Tomas Petricek, University of Kent, Canterbury, UK, tpetricek@kent.ac.uk;
Meng Wang, meng.wang@bristol.ac.uk, University of Bristol, Bristol, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART7
https://doi.org/10.1145/3498668

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:2 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

1 let totalFor c rows =

2 sum [row.output | row ← rows, row.country == c];

3 let data2015 = [row | row ← data, row.year == 2015];

4 countryData = [{ x: c, y: totalFor c data2015 }

5 | c ← ["China", "USA", "Germany"]]

6 in BarChart { caption: "Total output by country", data: countryData }

Fig. 1. Fine-grained linking of outputs to inputs, focusing on data for USA (left) and China (right).

means understanding what the components of the visualisation actually represent, i.e. the mapping
between data and visual elements. But this is a hard task, requiring time and expertise, even with
access to the data and source code used to create the visualisation. It is easy for innocent (but
devastating) mistakes such as transposing two columns of data to go unnoticed [Miller 2006].
Since visualisations are simply cases of programs that transform structured inputs (data tables)
into structured outputs (charts and other graphics), general-purpose language-based techiques for
fine-grained dependency tracking should be able to help with this, by making it possible to reveal
these relationships automatically to an interested user.

1.1 Linking Structured Outputs to Structured Inputs
First, interpreting a chart would be much easier if the user were able to explore the relationship
between the various parts of the chart and the underlying data interactively, discovering the
relevant relationships on a need-to-know basis. For example, selecting a particular bar in a bar chart
could highlight the relevant data in a table, perhaps showing only the relevant rows, as illustrated
in Figure 1. We could certainly do more and say something about the nature of the relationship
(summation, in this case), but even just revealing the relevant data puts a reader in a much better
position to fact-check or confirm their own understanding of what they are looking at. (The figure
shows how selecting the bar for the USA should highlight different data than selecting the bar for
China.) Indeed, this is useful enough that visualisation designers sometimes create “data-linked”
artefacts like these by hand, such as Nadieh Bremer’s award-winning visualisation of population
density growth in Asian cities [Bremer and Ranzijn 2015], at the cost of significant programming
effort. Libraries such as Altair [VanderPlas et al. 2018] alleviate some of this work, but require data
transformations to be specified using a limited set of combinators provided (and understood) by
the library.

What we would like to do is allow data scientists to author analyses and visualisations using an
expressive functional language like the one shown in Figure 1, and obtain data linking automatically
for the generated artefact, as a baked-in transparency feature. At the core of this is a program
analysis problem: we want to be able to focus on a particular visual attribute — say the value of y
in the record {x: "USA", y: 196.7} passed to BarChart in the example above — and perform some
kind of backwards analysis to determine the relevant inputs, in this case the value of output in four

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:3

1 let series type country = [

2 { x: year, y: row.output }

3 | year ← [2013..2018], row ← data,

4 row.year == year, row.energyType == type, row.country == country

5] in LineChart {

6 caption: "Output of USA relative to China",

7 plots: [

8 LinePlot { name: type, data: plot }

9 | type ← ["Bio", "Hydro", "Solar", "Wind"],

10 let plot = zipWith (fun p1 p2 → { x: p1.x, y: p1.y / p2.y })

11 (series type "USA") (series type "China")

12]

13 }

Fig. 2. Linking visualisations via common data dependencies

of the records that appear in the data source. Framing this as a program analysis problem not only
provides a path to automation, but also invites interesting questions that a hand-crafted solution
is unlikely to properly address. For example, does the union of two output selections depend on
the union of their respective dependencies? Do dependencies “round-trip”, in that they identify
sufficient resources to reconstruct the selected output? Are they minimal? These questions are
important to establishing trust, and a language-based approach offers a chance to address them.

1.2 Linking Structured Outputs to Other Structured Outputs
Second, authors often present distinct but related aspects of data in separate charts. In this situation
a reader should be able to focus on (select) a visual element in one chart or other structured output
and automatically see elements of a different chart which were computed using related inputs. For
example in Figure 2 below, selecting the bar on the left should automatically highlight all the related
visual elements on the right. This is a well-recognised use case called brushing and linking [Becker
and Cleveland 1987], which is supported by geospatial applications like GeoDa [Anselin et al. 2006]
and charting libraries like Plotly, but tends to be baked into specific views, or require programmer
effort and therefore anticipation in advance by the chart designer. Moreover these applications and
libraries provide no direct access to the common data which explains why elements are related.

Again, wewould like to enable amore automated (and ubiquitous) version of brushing and linking,
without imposing a burden on the programmer. They should be able to express visualisations and
other data transformations using standard functional programming features such as those shown
in Figure 2, and have brushing and linking enabled automatically between computed artefacts
which depend on common data. At the core of this requirement is a variant of our original program
analysis problem: we want to select part of the output and perform a backwards analysis to identify
the required inputs, as before, but then also perform a forwards analysis to identify the dependent

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:4 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

parts of the other output. In Figure 2, these consist of the value of y for the record passed to
LinePlot where x has the value 2015, for each LinePlot in the list passed to LineChart. Moreover,
we would also like the brushing and linking feature to be able to provide a concise view of the
data that explain why the two selections are linked. Note, however, that the intuition behind the
forwards analysis here is not the same as the one we appealed to in the context of round-tripping:
there the (hypothetical) question was whether the selected data was sufficient to reconstruct the
selected output, whereas to identify related items in another view, we must determine those parts
for which the selected data is necessary. As before, a language-based approach offers the prospect
of addressing these sorts of question in a robust way.

1.3 Contributions
To make progress towards these challenges, we present a bidirectional analysis which tracks fine-
grained data dependencies between input and output selections, with round-tripping properties
characterised by Galois connections. Selections have a complement, which we use to adapt the
analysis to compute fine-grained dependencies between two outputs which depend on common
inputs. Recent program slicing techniques [Perera et al. 2012, 2016; Ricciotti et al. 2017] allow the
user to focus on the output by “erasing” parts deemed to be irrelevant; the erased parts, called
holes, are propagated backwards by a backwards analysis which identifies parts of the program and
input which are no longer needed. Although these approaches also enjoy useful round-tripping
properties characterised by Galois connections, they only allow focusing on prefixes (the portion of
the output or program that remains after the irrelevant parts have been erased), a notion which is
not closed under complement. Our specific contributions are as follows:

– a new bidirectional dynamic dependency analysis which operates on selections of arbitrary
parts of data values, for a core calculus with lists, records and mutual recursion, and a proof
that the analysis is a Galois connection (§ 3);

– a second bidirectional dependency analysis, derived from the first by De Morgan duality,
which is also a Galois connection and which can be composed with the first analysis to link
outputs to outputs, with an extended example based on matrix convolution (§ 4);

– a richer surface language called Fluid1, implemented in PureScript, with familiar functional
programming features such as piecewise definitions and list comprehensions, and a further
Galois connection linking selections between the core and surface languages (§ 5).

Proofs and other supplementary materials can be found at https://arxiv.org/abs/2109.00445.

2 CORE LANGUAGE
The core calculus which provides the setting for the rest of the paper is a mostly standard call-
by-value functional language with datatypes and records. The main unusual feature is the use of
eliminators, a trie-like construct that provides a uniform syntax and semantics for pattern-matching;
this allows us to assume that incomplete or overlapping patterns and other syntactic considerations
have been dealt in the surface language. (In § 5 we show how familiar pattern-matching features
like case expressions and piecewise function definitions easily desugar into eliminators.) We give a
big-step environment-based semantics, which is easier for the backward and forward dependency
analyses in § 3, and introduce a compact (term-like) representation of derivation trees in the
operational semantics, called traces, which we will use to define the analyses over a fixed execution.
Mutual recursion requires some care for the backwards analysis, so we also treat that as a core
language feature.
1See https://github.com/explorable-viz/fluid/. To generate the figures in this paper, check out tag v0.4.2 and follow the
instructions in artifact-evaluation.md.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:5

Type
A,B ::= Bool Booleans

Int integers
Rec (

”
x : A) records

List A lists
A→ B functions

Γ,Δ ::=
”
x : A typing context

Term
e ::= true | false Boolean

n integer
x variable
𝜙 (#”e) primitive application
e e′ application
[] | u : v list
(# ”x : e) record
e.x record projection
λ𝜎 anonymous function
let h in e recursive let

h ::= # ”x : 𝜎 recursive functions

Continuation type
K ::= A term

A↣ K eliminator

Continuation
𝜅 ::= e term

𝜎 eliminator

Eliminator
𝜎 ,𝜏 ::= x : 𝜅 variable

{true: 𝜅, false: 𝜅 ′} Boolean
{(#”x): 𝜅} record
{[]: 𝜅, (:): 𝜎} list

Value
u, v ::= true | false Boolean

n integer
[] | u : v list
(# ”x : v) record
cl(𝜌 , h,𝜎) closure

𝜌 ::= # ”x : v environment

Fig. 3. Syntax of core language

2.1 Syntax and Typing
Although our implementation is untyped, types help describe the structure of the core language.
Figure 3 introduces the types A,B which include Bool, Int and function types A → B, but also
lists List A and records Rec (

”
x : A) which exemplify the two kinds of structured data which are of

interest: recursive datatypes with varying structure, and tabular data with a fixed shape. As usual
the notation x : A denotes the binding of x to A (understood formally as a pair); # ”

x : A denotes the
sequence of bindings that results from zipping same-length sequences #”x and #”

A . In a record type
Rec (

”
x : A) the field names in #”x are required to be unique.

The terms e of the language are defined in Figure 3. These include Boolean constants true and
false, integers n, variables x , and applications e e′. Primitives are not first-class; the expression
𝜙 (#”e) is the fully saturated application of 𝜙 to a sequence of arguments. (First-class and infix
primitives are provided by desugarings in § 5). We also provide list constructors nil [] and cons
e : e′, record construction (# ”x : e) and record projection e.x . The final two term forms, anonymous
functions λ𝜎 and recursive let-bindings let h in e where h is of the form # ”x : 𝜎 , are explained below
after we introduce the pattern-matching construct 𝜎 (eliminator). The typing rules for terms are
given in Figure 4, and are intended only to help a reader understand the language; therefore the
rules are simple and do not include features such as polymorphism. The main typing rules of
interest are the ones which involve eliminators.

2.2 Eliminators
Eliminators 𝜎 ,𝜏 are also defined in Figure 3, and are essentially generalised tries [Connelly and
Morris 1995; Hinze 2000] extended with variable binding. An eliminator specifies how to match
an initial part of a value and select a continuation 𝜅 for further execution; 𝜅 may be a term e, or
another eliminator 𝜎 . The Boolean eliminator {true: 𝜅, false: 𝜅 ′} selects either 𝜅 or 𝜅 ′ depending
on whether a Boolean value is true or false. The record eliminator {(#”x): 𝜅} matches a record with

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:6 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

Γ ⊢ e : A e has type A under Γ

Γ ⊢ x : A
x : A ∈ Γ

Γ ⊢ n : Int Γ ⊢ true : Bool Γ ⊢ false : Bool

Γ ⊢ ei : Ai (∀i ≤ | #”x |)
Γ ⊢ (# ”x : e) : Rec (

”
x : A)

Γ ⊢ e : Rec (
”
x : A)

Γ ⊢ e.xi : Ai
i ≤ | #”x | Γ ⊢ 𝜎 : A↣ B

Γ ⊢ λ𝜎 : A→ B

Γ ⊢ ei : Int (∀i ≤ j)
Γ ⊢ 𝜙 (#”e) : Int 𝜙 ∈ Zj → Z Γ ⊢ e : A→ B Γ ⊢ e′ : A

Γ ⊢ e e′ : B Γ ⊢ [] : List A

Γ ⊢ e : A Γ ⊢ e′ : List A
Γ ⊢ (e : e′) : List A

Γ ⊢ h : Δ Γ ·Δ ⊢ e : A
Γ ⊢ let h in e : A

Γ ⊢ 𝜎 : A↣ K 𝜎 has type A↣ K under Γ

Γ · x : A ⊢ 𝜅 : K

Γ ⊢ (x : 𝜅) : A↣ K

Γ ⊢ 𝜅 : K Γ ⊢ 𝜅 ′ : K
Γ ⊢ {true: 𝜅, false: 𝜅 ′} : Bool↣ K

Γ ⊢ 𝜅 : K

Γ ⊢ {(): 𝜅} : Rec ()↣ K

Γ ⊢ {(#”x): 𝜎} : Rec (
”
x : A)↣ B↣ K

Γ ⊢ {(#”x · y): 𝜎} : Rec (
”
x : A · y : B)↣ K

Γ ⊢ 𝜅 : K Γ ⊢ 𝜎 : A↣ List A↣ K

Γ ⊢ {[]: 𝜅, (:): 𝜎} : List A↣ B

⊢ v : A v has type A

⊢ n : Int ⊢ true : Bool ⊢ false : Bool
⊢ vi : Ai (∀i ≤ | #”x |)
⊢ (# ”x : v) : Rec (

”
x : A) ⊢ [] : List A

⊢ u : A ⊢ v : List A

⊢ (u : v) : List A
⊢ 𝜌 : Γ Γ ⊢ h : Δ Γ ·Δ ⊢ 𝜎 : A↣ B

⊢ cl(𝜌 , h,𝜎) : A→ B

⊢ 𝜌 : Γ 𝜌 has type Γ

⊢ vi : Ai (∀i ≤ | #”x |)
⊢ # ”x : v :

”
x : A

Γ ⊢ h : Δ h has type Δ under Γ

Γ ·Δ ⊢ 𝜎i : Ai ↣ Bi (∀i ≤ | #”x |)
Γ ⊢ # ”x : 𝜎 : Δ

Δ =
”
x : A→ B

Fig. 4. Typing rules for core language

fields #”x and then selects 𝜅 with the variables #”x bound to the components of the record. The list
eliminator {[]: 𝜅 , (:): 𝜎} selects 𝜅 if the list is empty and otherwise defers to another eliminator 𝜎
which specifies how the head and tail of the list are to be matched. Finally, the variable eliminator
x : 𝜅 extends the usual notion of trie, matching any value, and selecting 𝜅 with x bound to that value.
Eliminators resemble the “case trees” commonly used as an intermediate form when compiling
languages with pattern-matching [Graf et al. 2020], and can serve as an elaboration target for more
user-oriented features such as the piecewise definitions described in § 5.

The use of nested eliminators to match sub-values will become clearer if we consider the typing
judgement Γ ⊢ 𝜎 : A ↣ K given in Figure 4. Eliminators always have a function-like type; the
judgement form should be read as a four-place relation, with↣ being part of the notation. (The
definition delegates to an auxiliary judgement Γ ⊢ 𝜅 : K which we define to be the union of
the Γ ⊢ e : A and Γ ⊢ 𝜎 : A ↣ K relations.) The typing rule for variable eliminators reveals

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:7

the connection between eliminators and functions: it converts a continuation 𝜅 which can be
assigned type K under the assumption that x is of type A into an eliminator of type A ↣ K .
The typing rule for Boolean eliminators says that to make an eliminator of type Bool↣ K , we
simply need continuations 𝜅 and 𝜅 ′ of type K . The rule for the empty record states that to make an
eliminator of type Rec ()↣ K , we simply need a continuation 𝜅 of type K . The rule for non-empty
records allows us to transform a “curried” eliminator of type Rec (

”
x : A) ↣ B↣ K into one of

type Rec (
”
x : A · y : B)↣ K , analogous to the isomorphism between A→ B→ C and A × B→ C

[Hinze 2000]. (Formalising eliminators precisely requires nested datatypes [Bird and Meertens
1998] and polymorphic recursion, but these details need not concern us here.)

The typing rule for list eliminators {[]: 𝜅, (:): 𝜎} combines some of the flavour of record and
Boolean eliminators. To make an eliminator of type List A↣ K , we need a continuation of type
K for the empty case, and for the non-empty case, an eliminator of type A↣ List A↣ K which
will be used to process the head and tail.

2.2.1 Functions as Eliminators. We can now revisit the term forms λ𝜎 and let h in e. If 𝜎 is an
eliminator of type A↣ B, then λ𝜎 is an anonymous function of type A→ B. If h is of the form
”x : 𝜎 , then let h in e introduces a sequence of mutually recursive functions which are in scope in e.
The typing rule for let h in e uses an auxiliary typing judgement Γ ⊢ h : Δ which assigns to every
x inΔ the function type A→ B if the 𝜎 to which x is bound in h has the eliminator type A↣ B.

2.2.2 Values. Values v , u, and environments 𝜌 are also defined in Figure 3, and are standard for
call-by-value. (Environments are more convenient than substitution for tracking variable usage.)
To support mutual recursion, the closure form cl(𝜌 , h,𝜎) captures the (possibly empty) sequence h
of functions with which the function was mutually defined, in addition to the ambient environment
𝜌 . For the typing judgements ⊢ 𝜌 : Γ and ⊢ v : A for environments and values (Figure 4), only
the closure case is worth noting, which delegates to the typing rules for recursive definitions and
eliminators.

2.2.3 Evaluation. Figure 6 gives the operational semantics of the core language. In § 3 we will
define forward and backward analyses over a single execution; in anticipation of that use case,
we treat the operational semantics as an inductive data type, following the “proved transitions”
approach adopted by Boudol and Castellani [1989] for reversible CCS. The inhabitants of this data
type are derivation trees explaining how a result was computed, and the analyses will be defined by
structural recursion over these trees. Expressed in terms of inference rules, these trees can become
quite cumbersome, so we introduce an equivalent but more term-like syntax for them, called a
trace (Figure 5), similar to the approach taken by Perera et al. [2016] for 𝜋-calculus.

Trace
T ,U ::= x variable

true | false Boolean
n integer
(

”
x : T) record
T # ”x : v.y record projection
[] | T :U list
λ𝜎 anonymous function
T U ▶ w : T ′ application

𝜙 (# ”
Un) primitive application

let h in T recursive let

Match
w ::= x variable

true | false Boolean
(# ”x : w) record
[] | w :w ′ list

Fig. 5. Syntax of traces and matches

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:8 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

T :: 𝜌 , e⇒ v T witnesses that e evaluates to v in 𝜌

⇒-var
x : v ∈ 𝜌

x :: 𝜌 , x ⇒ v

⇒-lambda

λ𝜎 :: 𝜌 , λ𝜎 ⇒ cl(𝜌 , 𝜀,𝜎)

⇒-true

true :: 𝜌 , true⇒ true

⇒-false

false :: 𝜌 , false⇒ false

⇒-int

n :: 𝜌 , n⇒ n

⇒-record
Ti :: 𝜌 , ei ⇒ vi (∀i ≤ | #”x |)
(

”
x : T) :: 𝜌 , (# ”x : e)⇒ (# ”x : v)

⇒-project
T :: 𝜌 , e⇒ (# ”x : v) y : v ′ ∈ # ”x : v

T # ”x : v.y :: 𝜌 , e.y ⇒ v ′

⇒-nil

[] :: 𝜌 , []⇒ []

⇒-cons
T :: 𝜌 , e⇒ v U :: 𝜌 , e′ ⇒ v ′

T :U :: 𝜌 , e : e′ ⇒ v : v ′

⇒-apply-prim
U :: 𝜌 , ei ⇒ ni (∀i ≤ j)
𝜙 (# ”

Un) :: 𝜌 ,𝜙 (#”e) ⇒ 𝜙 (#”n)
𝜙 ∈ Zj → Z

⇒-let-rec
𝜌 , h↠ 𝜌 ′ T :: 𝜌 · 𝜌 ′, e⇒ v

let h in T :: 𝜌 , let h in e⇒ v

⇒-apply
T :: 𝜌 , e⇒ cl(𝜌1, h,𝜎 ′) 𝜌1, h↠ 𝜌2 U :: 𝜌 , e′ ⇒ v

w :: v ,𝜎 ′⇝ 𝜌3, e
′′ T ′ :: 𝜌1 · 𝜌2 · 𝜌3, e′′⇒ v ′

T U ▶ w : T ′ :: 𝜌 , e e′ ⇒ v ′

w :: v ,𝜎 ⇝ 𝜌 ,𝜅 w witnesses that 𝜎 matches v and yields 𝜌 and 𝜅

⇝-true

true :: true, {true: 𝜅, false: 𝜅 ′}⇝ 𝜀,𝜅

⇝-false

false :: false, {true: 𝜅, false: 𝜅 ′}⇝ 𝜀,𝜅 ′

⇝-var

x :: v , x : 𝜅 ⇝ x : v ,𝜅

⇝-nil

[] :: [], {[]: 𝜅, (:): 𝜎}⇝ 𝜀,𝜅

⇝-unit

() :: (), {(): 𝜅}⇝ 𝜀,𝜅

⇝-cons
w :: v ,𝜎 ⇝ 𝜌 ,𝜏 w ′ :: v ′,𝜏 ⇝ 𝜌 ′,𝜅 ′

(w :w ′) :: v : v ′, {[]: 𝜅, (:): 𝜎}⇝ 𝜌 · 𝜌 ′,𝜅 ′

⇝-record
(# ”x : w) :: # ”x : v ,𝜎 ⇝ 𝜌 ,𝜎 ′ w ′ :: u,𝜎 ′⇝ 𝜌 ′,𝜅

(# ”x : w · y : w ′) :: (# ”x : v · y : u), {(#”x · y): 𝜎}⇝ 𝜌 · 𝜌 ′,𝜅

x : v ∈ 𝜌 x : v is contained by 𝜌

∈-head

x : v ∈ (𝜌 · x : v)

∈-tail
x : v ∈ 𝜌

x : v ∈ (𝜌 · y : u) x ≠ y

𝜌 , h↠ 𝜌 ′ h generates 𝜌 ′ in 𝜌

↠-rec-defs
vi = cl(𝜌 , # ”x : 𝜎 ,𝜎i) (∀i ∈ | #”x |)

𝜌 , # ”x : 𝜎 ↠ # ”x : v

Fig. 6. Operational semantics

The judgement T :: 𝜌 , e⇒ v defined at the top of Figure 6 states that term e under environment 𝜌
evaluates to value v , and that T is a proof term that witness that fact. (In the figure, the traces appear
in grey, to reinforce the idea that they are not part of the definition of⇒ but rather a notation
for its inhabitants.) The rules for Booleans, integers and lists are standard and have unsurprising
trace forms. For variables, we give an explicit inductive definition of the environment lookup
relation ∈ at the bottom of the figure, again so that later we can perform analysis over a proof that
an environment contains a binding. The lambda rule is standard except that we specify 𝜀 for the
sequence of definitions being simultaneously defined, since a lambda is not recursive. For record

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:9

construction, the trace form contains a subtrace Ti for each field, and for record projection, which
also uses the lookup relation ∈, the trace form T # ”x : v.y records both the record # ”x : v and the field
name y that was selected.
The rule for (mutually) recursive functions let h in e, where h is a sequence # ”x : 𝜎 of function

definitions, makes use of the auxiliary relation 𝜌 , h↠ 𝜌 ′ at the bottom of Figure 6 which turns h
into an environment 𝜌 ′ binding each function name xi to a closure cl(𝜌 , h,𝜎i) capturing 𝜌 and a
copy of h. For primitive applications, the trace records the values of the arguments which were
passed to the operation 𝜙 . The rule for application e e′ is slightly non-standard, because it must
deal with both mutual recursion and pattern-matching. First we unpack the recursive definitions
h from the closure cl(𝜌1, h,𝜎) computed by e, and again use the auxiliary relation↠ to promote
this into an environment 𝜌2 of closures. We then use the relation⇝ explained below to match v
against the eliminator 𝜎 , obtaining the branch e′′ of the function to be executed and parameter
bindings 𝜌3. In addition to subtraces T and U for the function and argument, the application trace
T U ▶ w : T ′ also has subtraces w for the pattern-match and T ′ for the selected branch.

2.2.4 Pattern Matching. The judgement w :: v ,𝜎 ⇝ 𝜌 ,𝜅 also defined in Figure 6 states that
eliminator 𝜎 can match v and produce environment 𝜌 and continuation 𝜅, with 𝜌 containing the
variable bindings that arose during the match. Matches w are a compact notation for proof terms
for the⇝ relation, analogous to traces for the⇒ relation, and again appear in grey in the figure.
Variable eliminators x : 𝜅 match any value, returning the singleton environment x : v and con-

tinuation 𝜅. Boolean eliminators match any Boolean value, returning the appropriate branch and
empty environment 𝜀. List eliminators {[]: 𝜅, (:): 𝜎} match any list. The nil case is analogous to
the handling of Booleans; the cons case depends on the fact that the nested eliminator 𝜎 for the
cons branch has the curried type A↣ List A→ K . First, we recursively match the head v of type
A using 𝜎 , obtaining bindings 𝜌 and eliminator 𝜏 : List A↣ K as the continuation. Then the tail v ′
is matched using 𝜏 to yield additional bindings 𝜌 ′ and final continuation 𝜅 ′ of type K. As a simple
example, which omits the proof terms w , consider the following pattern-match:

⇝-cons

⇝-var
5, x: xs: e2 ⇝ x: 5, xs: e2

⇝-var
6 : [], xs: e2 ⇝ xs: (6 : []), e2

5 : 6 : [], {[]: e1, (:): x: xs: e2}⇝ (x: 5) · (xs: 6), e2
Here the eliminator {[]: e1, (:): x: xs: e2} is used to match 5:6:[]. The [] case is disregarded; the
(:) case is used to retrieve a variable eliminator x: xs: e2, which is used to match the head 5. This
produces the binding x: 5 and a further variable eliminator xs: e2 as the continuation, which is
used to match the tail. This produces the additional binding xs: (6 : []) and the expression e2 as
the continuation. To see how this might generalise to a nested pattern, consider how one could
replace the inner variable eliminator xs: e2 by another list eliminator.
Record matching is similar: the empty record case resembles the nil case, and the non-empty

case relies on the nested eliminator having curried type Rec (
”
x : A)↣ B↣ K . The initial part # ”x : v

of the record is matched using 𝜎 , returning another eliminator 𝜎 ′ of type B↣ K . Then the last
field y : u is matched using 𝜎 ′ to yield final continuation 𝜅 of type K .

3 A BIDIRECTIONAL DYNAMIC DEPENDENCY ANALYSIS
We now extend the core language from § 2 with a bidirectional mechanism for tracking data
dependencies. § 3.1 establishes a way of selecting (parts of) values, such as the height of a bar in a
bar chart. § 3.2 defines a forward analysis function ⇒T which specifies how selections on programs
and environments (collectively: input selections) become selections on outputs; selections represent
availability, with the computed output selection indicating the data available to the downstream

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:10 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

computation. § 3.3 defines a backward dependency function ⇒ T specifying how output selections
are mapped back to inputs; then selections represent demands, with the computed input selection
identifying the data needed from the upstream computation. Both functions are monotonic. This will
become important in § 3.4, where we show that ⇒ T and ⇒T form a Galois connection, establishing
the round-tripping properties alluded to in § 1.1.

3.1 Lattices of Selections
Our approach to representing selections is shown in Figure 7. The basic idea is to parameterise the
type Val of values by a (bounded) latticeA of selection states 𝛼 . We add selection states to Booleans,
integers, records and lists; while it would present no complications to equip closures with selection
states too, for present purposes we are only interested in dependencies between first-order data,
so closures are not (directly) selectable. Closures do however have selectable parts, and moreover
capture the current argument availability, explained in § 3.2.2 below, which is also a selection state
𝛼 . We parameterise the type Term of terms similarly, allowing us to trace data dependencies back
to expressions that appear in the source code, but only add selection states to the term constructors
corresponding to selectable values. We return to this in § 5.

Terms selections
e ∈ TermA ::= ...

□ hole
true𝛼 | false𝛼 Boolean
n𝛼 integer
(# ”x : e)𝛼 record
[]𝛼 | e :𝛼 e′ list

𝛼 , 𝛽 ∈ A selection state

Value selections
u, v ∈ ValA ::= □ hole

true𝛼 | false𝛼 Boolean
n𝛼 integer
(# ”x : v)𝛼 record
[]𝛼 | u :𝛼 v list
cl(𝜌 , h,𝛼 ,𝜎) closure

Fig. 7. Selection states, term selections and value selections

The top and bottom elements ⊤ and ⊥ of A represent fully selected and fully unselected; the
meet and join operations ⊓ and ⊔, which have ⊤ and ⊥ as their respective units, are used to
combine selection information. In Figure 1, the data field of BarChart expects a list of records with
fields x and y, mapping strings representing categorical data to floats determining the height of
the corresponding bar; the record computed for China is (x: "China" · y: 295.3). The two-point
lattice 2 def

= ⟨{tt, ff}, tt, ff,∧,∨⟩ can be used to represent the selection of the field y within this record
as (x: "China"ff · y: 295.3tt)ff , indicating that the number 295.3 is selected, but that neither the
string "China", nor the record itself, is selected. Because lattices are closed under component-wise
products, we sometimes write (𝛼 , 𝛽) ⊑ (𝛼 ′, 𝛽 ′) to mean that 𝛼 ⊑ 𝛼 ′ and 𝛽 ⊑ 𝛽 ′. This also suggests
more interesting lattices of selections, such as vectors of Booleans to represent multiple selections
simultaneously, which might be visualised using different colours (as in Figure 1).

3.1.1 Selections of a Value. The analyses which follow will be defined with respect to a fixed
computation, and so we will often need to talk about the selections of a given value. To make
this notion precise, consider that the raw (selection-free) syntax described in § 2 can be recovered
from a term selection via an erasure operation ⌊·⌋ : ValA → Val 1 which forgets the selection
information, where 1 is the trivial one-point lattice. We refer to ⌊v⌋ as the shape of v . Allowing u, v
from now on to range over raw values, and reserving u, v for value selections, we can then define:

Definition 3.1 (Selections of v). Define SelvA to be the set of all values v ∈ ValA with shape v,
i.e. that erase to v.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:11

v ⊑ v ′

□ ⊑ v

𝛼 ⊑ 𝛼 ′

n𝛼 ⊑ n𝛼′ n⊥ ⊑ □
𝛼 ⊑ 𝛼 ′

true𝛼 ⊑ true𝛼′ true⊥ ⊑ □
𝛼 ⊑ 𝛼 ′

false𝛼 ⊑ false𝛼′

false⊥ ⊑ □
𝛼 ⊑ 𝛼 ′ vi ⊑ ui (∀i ∈ | #”x |)

(# ”x : v)𝛼 ⊑ (# ”x : u)𝛼′

vi ⊑ □ (∀i ∈ | #”x |)
(# ”x : v)⊥ ⊑ □

𝛼 ⊑ 𝛼 ′

[]𝛼 ⊑ []𝛼′ []⊥ ⊑ □

(𝛼 , v , v ′) ⊑ (𝛼 ′, v , v ′)
v :𝛼 v ′ ⊑ u :𝛼′ u

′
(v , v ′) ⊑ (□,□)
v :⊥ v

′ ⊑ □
(𝜌 , h,𝛼 ,𝜎) ⊑ (𝜌 ′, h′,𝛼 ′,𝜎 ′)

cl(𝜌 , h,𝛼 ,𝜎) ⊑ cl(𝜌 ′, h′,𝛼 ′,𝜎 ′)
(𝜌 , h,𝜎) ⊑ (□𝜌 ,□,□)
cl(𝜌 , h,⊥,𝜎) ⊑ □

Fig. 8. Preorder on value selections

Since its elements have a fixed shape, the pointwise comparison of any v , v ′ ∈ SelvA using
the partial order ⊑ of A is well defined, as is the pointwise application (zip) of a binary opera-
tion [Gibbons 2017]. It should therefore be clear that if A is a lattice, then SelvA is also a lattice,
with ⊤v, ⊥v, ⊓v, and ⊔v defined pointwise. For example, if u and u′ have the same shape and v
and v ′ have the same shape, the join of the lists (u :𝛼 v) and (u′ :𝛼′ v ′) is defined and equal to
(u ⊔ u′) :𝛼⊔𝛼′ (v ⊔ v ′). Similarly, the top element of SelvA is the selection of v which has ⊤ at
every selection position. (We omit the v indices from these lattice operations if it is clear which
lattice is being referred to.) The notion of the “selections” of v extends to the other syntactic forms.

3.1.2 Environment Selections and Hole Equivalence. The notion of the “selections” of v also extends
(pointwise) to environments, so that Sel𝝆 A means the set of environment selections 𝜌 ′ of shape 𝝆,
where the variables in 𝜌 ′ are bound to selections of the corresponding variables in 𝝆. One challenge
arises from the pointwise use of ⊔ to combine environment selections. Since environments contain
other environments recursively, via closures, a naive implementation of environment join is a very
expensive operation. One solution is to employ an efficient representation of values which are fully
unselected, which is often the case during the backward analysis.

We therefore augment the set of value selections ValA with a distinguished element hole, written
□, which is an alternative notation for ⊥v for any v, i.e. the selection of shape v which has ⊥ at
every selection position, and generalise this idea to terms and eliminators. The equivalence of □
to any such bottom element is established explicitly by the preorder order defined (for values) in
Figure 8: the first rule always allows □ on the left-hand side of ⊑, and other rules allow □ on the
right-hand side of ⊑ as long as all the selections that appear on the left-hand side are ⊥. (The rules
for terms e and eliminators 𝜎 are analogous and are omitted.) If we write � for the equivalence
relation induced by ⊑ on values selections, which we call hole-equivalence, it should be clear that
□ ⊔ v � v and □ ⊓ v � □. This means the join of two selections v , v ′ of v can be implemented
efficiently, whenever one selection is □, by simply discarding □ and returning the other selection
without further processing.

Definition 3.2 (Hole equivalence). Define � as the intersection of ⊑ and ⊒.

Because □ is equivalent to ⊥v for any v, all such bottom elements are hole-equivalent. For
example, the value selection □ :⊤ □ is hole-equivalent to 5⊥ :⊤ □, but also to 6⊥ :⊤ []⊥, and so the
last two selections, even though they have different shapes, are hole-equivalent by transitivity. In
practice we only use the hole ordering to compare selections with the same shape.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:12 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

3.2 Forward Data Dependency
We now define the core bidirectional data dependency analyses for a fixed computation T ::
𝝆, e⇒ v, where T is a trace. In practice one would obtain T by first evaluating e in 𝝆, and then
run multiple forward or backward analyses over T with appropriate lattices. We start with the
forward dependency function ⇒T which “replays” evaluation, turning input availability into output
availability, with T guiding the analysis whenever holes in the input selection would mean the
analysis would otherwise get stuck. ⇒T uses the auxiliary function ⇝w for forward-analysing a
pattern-match; we explain this first, as it introduces the key idea of a selection as identifying the
data available to a downstream computation.

3.2.1 Forward Match. Figure 9 defines a family of forward-match functions ⇝w of type Selv,𝝈 A →
(Sel𝝆,𝜿 A) × A for any w :: v,𝝈 ⇝ 𝝆,𝜿 . (The definition is presented in a relational style for
readability, but should be understood as a total function defined by structural recursion on w ,
which appears in grey to emphasise the connection to Figure 6.) Forward match replays the match
witnessed by w , turning availability (v ,𝜎) ∈ Selv,𝝈 A on the matched value and eliminator into
availability (𝜌 ,𝜅) ∈ Sel𝝆,𝜿 A on the variable bindings and continuation yielded by the match.
⇝w also returns themeet of the selection states associated with the part of v which was matched

by 𝝈 . We call this the argument availability, since it represents the availability of the matched part
of a function argument. In the variable case, the empty part of v was matched and so the argument
availability in this context is simply ⊤, the unit for ⊓. In the Boolean case, the argument availability
is simply the 𝛼 on true𝛼 or false𝛼 ; the empty list and empty record cases are similar. In the cons
case, we return the meet of the 𝛼 on the cons node itself with the availabilities 𝛽 and 𝛽 ′ computed
for v and v ′. Non-empty records are similar, but to process the initial part of the record, we supply
the neutral selection state ⊤ on the subrecord in order to use the definition recursively. (Note that
these subrecords exist only as intermediate artefacts of the interpreter.)
One might hope to be able to dispense with the match witness w and simply define ⇝ by case

analysis on v and 𝜎 . However, it is then unclear how to proceed in the event that either v or 𝜎 is a
hole. In particular, it is not clear how to obtain the 𝝆 associated with the original pattern-match in
order to produce an environment selection 𝜌 ′ ∈ Sel𝝆 A. If ⇝ is defined with respect to a known w ,
this can be achieved via additional rules ⇝-hole-v and ⇝-hole-𝜎 that define the behaviour at hole
to be the same as the behaviour at any �-equivalent value in SelvA or Sel𝝈 A.

Operationally, these hole rules can be interpreted as “expanding” the holes in v or 𝜎 , in a shape-
preserving way, until another rule of the definition applies. Recall the pattern-matching example
from § 2.2.4. This pattern-match has the witness x : xs, recording that the list 5:6:[] was matched
to the depth of a single cons. Suppose we wish to forward-analyse over the pattern-match using □
to represent the selection on the matched list. The information in the match witness allows us to
expand □ to □ :⊥ □ and then use the ⇝-cons rule to derive the following forward-match:

⇝-hole-v
⇝-cons

⇝-var □, x: xs: e2 ⇝x x: □, xs: e2,⊤ ⇝-var □, xs: e2 ⇝xs xs: □, e2,⊤
□ :⊥ □, {[]: e1, (:): x: xs: e2} ⇝x : xs (x: □) · (xs: □), e2,⊥
□, {[]: e1, (:): x: xs: e2} ⇝x : xs (x: □) · (xs: □), e2,⊥

Lemma 3.3 below implies that an implementation is free to replace any term by a hole-equivalent
one of the same shape, with the result of ⇝w being unique up to �. This justifies the strategy
of expanding holes just enough for a non-hole rule to apply; there will be exactly one such rule,
corresponding to the execution path originally taken, and although there may be multiple possible

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:13

v ,𝜎 ⇝w 𝜌 ,𝜅,𝛼 v and 𝜎 forward-match along w to 𝜌 and 𝜅, with argument availability 𝛼

⇝-hole-v
□ � v v ,𝜎 ⇝w 𝜌 ,𝜅,𝛼

□,𝜎 ⇝w 𝜌 ,𝜅,𝛼

⇝-hole-𝜎
□ � 𝜎 v ,𝜎 ⇝w 𝜌 ,𝜅,𝛼

v ,□ ⇝w 𝜌 ,𝜅,𝛼

⇝-var

v , x : 𝜅 ⇝x x : v ,𝜅,⊤

⇝-true

true𝛼 , {true: 𝜅, false: 𝜅 ′} ⇝true 𝜀,𝜅,𝛼

⇝-false

false𝛼 , {true: 𝜅, false: 𝜅 ′} ⇝false 𝜀,𝜅 ′,𝛼

⇝-unit

()𝛼 , {(): 𝜅} ⇝() 𝜀,𝜅,𝛼

⇝-record
(# ”x : v)⊤, {(#”x): 𝜎} ⇝(# ”x : w)

𝜌 ,𝜎 ′, 𝛽 u,𝜎 ′ ⇝w 𝜌 ′,𝜅, 𝛽 ′

(# ”x : v · y : u)𝛼 , {(#”x · y): 𝜎} ⇝(# ”x : w ·y : w′) 𝜌 · 𝜌 ′,𝜅,𝛼 ⊓ 𝛽 ⊓ 𝛽 ′

⇝-nil

[]𝛼 , {[]: 𝜅, (:): 𝜎 ′} ⇝[] 𝜀,𝜅,𝛼

⇝-cons
v ,𝜎 ⇝w 𝜌 ,𝜏 , 𝛽 v ′,𝜏 ⇝w′ 𝜌

′,𝜅 ′, 𝛽 ′

v :𝛼 v ′, {[]: 𝜅, (:): 𝜎} ⇝w :w′ 𝜌 · 𝜌 ′,𝜅 ′,𝛼 ⊓ 𝛽 ⊓ 𝛽 ′

Fig. 9. Forward match

expansions, they will produce hole-equivalent results. This also explains why it is reasonable to
think of ⇝w not just as a relation, but as a function.

Lemma 3.3 (Monotonicity of ⇝w). Supposew :: v,𝝈 ⇝ 𝝆,𝜿 , with v ,𝜎 ⇝w 𝜌 ,𝜅 ,𝛼 and v ′,𝜎 ′ ⇝w
𝜌 ′,𝜅 ′,𝛼 ′. If (v ,𝜎) ⊑ (v ′,𝜎) then (𝜌 ,𝜅,𝛼) ⊑ (𝜌 ′,𝜅 ′,𝛼 ′).
The forward-match function ⇝w is a key component of the forward evaluation function ⇒T

defined in § 3.2.2 below. When forward-analysing a function call, the argument is forward-matched
using ⇝w , and the resulting argument availability 𝛼 used to upper-bound the availability of any
partial values constructed by that function, establishing a forward link from resources consumed and
resources produced. Since the dynamic context of a function call extends over multiple evaluation
steps, ⇒T is threaded with an additional input 𝛼 which tracks the active argument availability; at
the outermost level, before there are any active function calls, this has the value ⊤.
3.2.2 Forward Evaluation. Figure 10 defines a family of forward-evaluation functions ⇒T of type
(Sel𝝆,eA) × A → SelvA for any T :: 𝝆, e ⇒ v. (Like forward match, forward evaluation is
presented in a relational style, but should be read as a total function defined by structural recursion
on T .) Forward evaluation replays T , taking a selection (𝜌 , e) ∈ Sel𝝆,eA identifying the available
parts of the environment and program, and an 𝛼 ∈ A representing the argument availability for the
dynamically innermost function call, and returning a selection v ∈ SelvA identifying the outputs
that can be produced using only the available resources. The rules resemble those for the evaluation
relation⇒. The general pattern is that each rule takes the active argument availability 𝛼 , combines
it (using ⊓) with any availability supplied on the expression form consumed at that step, and uses
the result as the availability of any partial values constructed at that step. The argument availability
𝛼 is passed down unchanged to any subcomputations, except in the case of function application.

Function application. In the application case, the rule must determine a new argument availability
for the function body, because the function context is changing. First, we unpacks the 𝛽 stored
in the closure, representing the argument availability which was active when the closure was
constructed. Then we determine an additional selection state 𝛽 ′, representing the availability of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:14 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

𝜌 , e,𝛼 ⇒T v 𝜌 and e, with argument availability 𝛼 , forward-evaluate along T to v

⇒-hole
□ � e 𝜌 , e,𝛼 ⇒T v

𝜌 ,□,𝛼 ⇒T v

⇒-var
x : v ∈ 𝜌

𝜌 , x ,𝛼 ⇒x v

⇒-lambda

𝜌 , λ𝜎 ,𝛼 ⇒λ𝜎′ cl(𝜌 , 𝜀,𝛼 ,𝜎)

⇒-true

𝜌 , true𝛼′ ,𝛼 ⇒true true𝛼⊓𝛼′

⇒-false

𝜌 , false𝛼′ ,𝛼 ⇒false false𝛼⊓𝛼′

⇒-int

𝜌 , n𝛼′ ,𝛼 ⇒n n𝛼⊓𝛼′

⇒-record
𝜌 , ei ,𝛼 ⇒Ti vi (∀i ≤ |

#”x |)
𝜌 , (# ”x : e)𝛼′ ,𝛼 ⇒(# ”

x : T) (# ”x : v)𝛼⊓𝛼′

⇒-project
𝜌 , e,𝛼 ⇒T� (# ”x : u)𝛽 y : v ′ ∈ # ”x : u

𝜌 , e.y ,𝛼 ⇒T # ”x : v.y
v ′

⇒-nil

𝜌 , []𝛼′ ,𝛼 ⇒[] []𝛼⊓𝛼′

⇒-cons
𝜌 , e,𝛼 ⇒T v 𝜌 , e′,𝛼 ⇒U v ′

𝜌 , e :𝛼′ e
′,𝛼 ⇒T :U v :𝛼⊓𝛼′ v

′

⇒-apply-prim
𝜌 , ei ,𝛼 ⇒Ui

� ni𝛽i (∀i ≤ |
#”n |)

𝜌 ,𝜙 (#”e),𝛼 ⇒𝜙 (#”
Un) 𝜙 (

#”n)𝛼′
𝜙 #”n ∗ (

#”

𝛽) = 𝛼 ′

⇒-apply
𝜌 , e,𝛼 ⇒T� cl(𝜌1, h, 𝛽 ,𝜎) 𝜌1, h, 𝛽 ↠ 𝜌2 𝜌 , e′,𝛼 ⇒U v

v ,𝜎 ⇝w 𝜌3, e
′′, 𝛽 ′ 𝜌1 · 𝜌2 · 𝜌3, e′′, 𝛽 ⊓ 𝛽 ′ ⇒T ′ v ′
𝜌 , e e′,𝛼 ⇒T U▶w : T ′ v

′

⇒-let-rec
𝜌 , h′,𝛼 ↠ 𝜌 ′ 𝜌 · 𝜌 ′, e,𝛼 ⇒T v

𝜌 , let h′ in e,𝛼 ⇒let h in T v

𝜌 , h,𝛼 ↠ 𝜌 ′ h forward-generates to 𝜌 ′ in 𝜌 and 𝛼

↠-rec-defs
vi = cl(𝜌 , # ”x : 𝜎 ,𝛼 ,𝜎i) (∀i ∈ | #”x |)

𝜌 , # ”x : 𝜎 ,𝛼 ↠
”x : v

Fig. 10. Forward evaluation

the matched part of the current argument, by forward-matching v with the eliminator 𝜎 from
the closure. These are combined using ⊓ to represent the conjoined availability of all arguments
that were pattern-matched in order to execute the function body, and the result 𝛽 ⊓ 𝛽 ′ used to
forward-evaluate the function body. The auxiliary function ↠𝜌 ,h: (Sel𝝆,hA)×A → Sel𝝆′ A for any
𝝆,h↠ 𝝆 ′ is given at the bottom of Figure 10 and resembles↠, but captures the active argument
availability into each closure.
Primitive application. Since primitive operations are opaque, their input-output dependencies

cannot be derived from their execution, but must be supplied by the primitive operation itself. More
specifically, every primitive 𝜙 ∈ Int

i → Int is required to provide a forward-dependency function
𝜙 #”n ∗ : Ai → A for every #”n ∈ Int

i which specifies how to turn an input selection #”𝛼 ∈ Ai for
#”n into an output selection 𝛼 ′ on 𝜙 (#”n). There is one such function per possible input #”n so that
the dynamic dependencies for that specific call can depend on the values passed to the operation.
For example, in our implementation, the dependency function for multiplication establishes (for
non-zero n) that both n ∗ 0 and 0 ∗ n depend only on 0. However, primitives are free to implement
forward-dependency however they choose, with the caveat that § 3.3.2 will also require 𝜙 to provide

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:15

a backward-dependency function for any input #”n , and § 3.4 will require these to be related in a
certain way for the consistency of the whole system to be guaranteed.

Other rules. The remaining rules follow the general pattern. Variable lookup disregards 𝛼 , simply
preserving the selection on the value extracted from the environment. The lambda rule captures 𝛼
in the closure along with the environment; the letrec rule passes 𝛼 on to ↠ so it can be captured
by recursive closures as well. Record projection is more interesting, disregarding not only the
argument availability 𝛼 but also the availability 𝛽 of the record itself. This is because containers are
considered to be independent of the values they contain: here, vi has its own internal availability
which is preserved by projection, but there is no implied dependency of the field on the record
from which it was projected. Record construction also reflects this principle, preserving the field
selections unchanged into the resulting record selection. But since this rule also constructs a partial
value — the record itself — it must specify an availability on that output. The availability is set to
𝛼 ⊓ 𝛼 ′, reflecting the dependency of the constructed container on both the constructing expression
and the active argument match. The rules for nil, cons, integers and Booleans are similar, since
they also construct values.

Hole cases. Environments have no special □ form. However, a hole rule is needed to allow forward
evaluation to continue in the event that e is □; this is essential because subsequent steps may
result in non-□ outputs (for example by extracting non-□ values from 𝜌). The rule is similar to
the hole rules for ⇝w and again can be understood operationally as using the information in T to
expand □ sufficiently for another rule to apply, with a result which is unique up to �. In addition,
application and record projection must accommodate the case where the selection on the closure
or record being eliminated is represented by □. In these rules ⇒T� is used to denote the relational
composition of ⇒T and �.

Lemma 3.4 (Monotonicity of ⇒T). Suppose T :: 𝝆, e⇒ v with 𝜌 , e,𝛼 ⇒T v and 𝜌 ′, e′,𝛼 ′ ⇒T v ′.
If (𝜌 , e,𝛼) ⊑ (𝜌 ′, e′,𝛼 ′) then v ⊑ v ′.

3.3 Backward Data Dependency
The backward dependency function ⇒ T “rewinds” evaluation, turning output demand into input
demand, with T guiding the analysis backward. We start with the auxiliary function ⇝ w which is
used for backward-analysing a pattern-match.

3.3.1 Backward Match. Figure 11 defines a family of backward-match functions ⇝ w of type
(Sel𝝆,𝜿 A) × A → Selv,𝝈 A for any w :: v,𝝈 ⇝ 𝝆,𝜿 . Backward-match rewinds the match
witnessed by w , turning demand on the environment and continuation into demand on the value
and eliminator that were originally matched. The additional input 𝛼 represents the downstream
demand placed on any resources that were constructed in the context of this match; ⇝ w transfers
this to the matched portion of v, establishing a backwards link from resources produced to resources
consumed in a given function context. We call 𝛼 the argument demand since it represents the
demand to be pushed backwards onto the matched part of a function argument.
In the variable case, the empty part of v was matched, so 𝛼 is disregarded. The rule need only

ensure that the demand v in the singleton environment x : v is propagated backward. If a Boolean
constant was matched, 𝛼 becomes the demand on that constant, and 𝜅 , capturing the demand on the
continuation, is used to construct the demand on the original eliminator, with □ used to represent
the absence of demand on the non-taken branch. (This use of □ explains why matches w need only
retain information about taken branches.) The nil case is similar.
For a cons match w :w ′, we split the environment into 𝜌 and 𝜌 ′, using the fact that there is a

unique well-typed decomposition. We then backward-match w and w ′ recursively to obtain v and
v ′, representing the demand on the head and tail of the list. These are combined into the demand on

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:16 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

𝜌 ,𝜅,𝛼 ⇝ w v ,𝜎 𝜌 and 𝜅, with argument demand 𝛼 , backward-match along w to v and 𝜎

⇝ -true

𝜀,𝜅,𝛼 ⇝
true

true𝛼 , {true: 𝜅, false: □}

⇝ -false

𝜀,𝜅,𝛼 ⇝
false

false𝛼 , {true: □, false: 𝜅}

⇝ -var

x : v ,𝜅,𝛼 ⇝ x v , x : 𝜅

⇝ -unit

𝜀,𝜅,𝛼 ⇝
()

()𝛼 , {(): 𝜅}

⇝ -nil

𝜀,𝜅,𝛼 ⇝
[]

[]𝛼 , {[]: 𝜅, (:): □}
⇝ -record
𝜌 ′,𝜅,𝛼 ⇝ w′ u,𝜎 𝜌 ,𝜎 ,𝛼 ⇝

(# ”x : w)
(# ”x : v)𝛽 ,𝜏

𝜌 · 𝜌 ′,𝜅,𝛼 ⇝
(# ”x : w ·y : w′) (# ”x : v · y : u)𝛼 , {(#”x · y): 𝜏}

⇝ -cons
𝜌 ′,𝜅,𝛼 ⇝ w′ v

′,𝜎 𝜌 ,𝜎 ,𝛼 ⇝ w v ,𝜏

𝜌 · 𝜌 ′,𝜅,𝛼 ⇝ w :w′ v :𝛼 v ′, {[]: □, (:): 𝜏}

Fig. 11. Backward match

the entire list, using 𝛼 as the demand on the root cons node. The eliminator selection 𝜎 represents
the demand on the interim eliminator used to match the tail, and 𝜏 the demand on the eliminator
used to match the head; these are then combined into a demand on the eliminator used to match
the whole list, with □ again used to represent the absence of demand on the nil branch. Records
are similar, except that there is only a single branch. The selection state 𝛽 computed for the initial
part of the record is an artefact of processing records recursively, and is disregarded.

Lemma 3.5 (Monotonicity of ⇝ w). Suppose w :: v,𝝈 ⇝ 𝝆,𝜿 , with 𝜌 ,𝜅,𝛼 ⇝ w v ,𝜎 and
𝜌 ′,𝜅 ′,𝛼 ′ ⇝ w v ′,𝜎 ′. If (𝜌 ,𝜅,𝛼) ⊑ (𝜌 ′,𝜅 ′,𝛼 ′) then (v ,𝜎) ⊑ (v ′,𝜎).

3.3.2 Backward Evaluation. Figure 12 defines a family of backward-evaluation functions ⇒ T of
type SelvA → (Sel𝝆,eA) × A for any T :: 𝝆, e⇒ v. Backward evaluation rewinds T , using the
output selection v ∈ SelvA to determine an input selection (𝜌 , e) ∈ Sel𝝆,eA and an argument
demand 𝛼 ∈ A which will eventually be pushed back onto the argument of the dynamically
innermost function call. (At the outermost level, where there are no active function calls, the
argument demand is discarded.) The rules resemble those of the evaluation relation⇒ with inputs
and outputs flipped. The general pattern is that each backward rule takes the join of the demand
attached to any partial values constructed at that step, and the argument demand associated with
any subcomputations, and passes it upwards as the new argument demand. The output environment
is constructed similarly, by joining the demand flowing back through the environment copies used
to evaluate subcomputations. Demand is also attached to the source expression when it is the
expression form responsible for the construction of a demanded value.

Function application. The application rule is where the argument demand is used and the function
context changes, so we start here. The rule essentially runs the forward evaluation rule in reverse,
using the trace T ′ to backward-evaluate the function body. The argument demand 𝛽 associated with
T ′ is the join of the demand on any resources constructed directly by that function invocation, and
is transferred to the matched part of the function argument by the backward-match function ⇝ w .
The argument demand passed upwards into the enclosing function context is 𝛼 ⊔ 𝛼 ′, representing
the resources needed along T and U. The auxiliary function ↠ 𝜌 ,h : Sel𝝆′ A → (Sel𝝆,hA) × A for
any 𝝆,h↠ 𝝆 ′ defined at the bottom of Figure 12 is used to turn 𝜌2, capturing the demand flowing
back through any recursive uses of the function and any others with which it was mutually defined,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:17

v ⇒ T 𝜌 , e,𝛼 v backward-evaluates along T to 𝜌 and e, with argument demand 𝛼

⇒ -hole
□ � v v ⇒ T 𝜌 , e,𝛼

□ ⇒ T 𝜌 , e,𝛼

⇒ -var
𝜌 ′ ∋𝜌 x : v

v ⇒ x 𝜌 ′, x ,⊥

⇒ -lambda

cl(𝜌 , 𝜀,𝛼 ,𝜎) ⇒ λ𝜎′ 𝜌 , λ𝜎 ,𝛼

⇒ -int

n𝛼
⇒

n □𝝆 , n𝛼 ,𝛼

⇒ -true

true𝛼
⇒

true □𝝆 , true𝛼 ,𝛼

⇒ -false

false𝛼
⇒

false □𝝆 , false𝛼 ,𝛼

⇒ -record
vi
⇒

Ti
𝜌i , ei ,𝛼

′
i (∀i ≤ | #”x |)

(# ”x : v)𝛼
⇒

(
”
x : T)

⊔
#”𝜌 , (# ”x : e)𝛼 ,𝛼 ⊔

⊔
#”𝛼 ′

⇒ -project
”x : u ∋ # ”x : v y : v ′ (# ”x : u)⊥

⇒
T 𝜌 , e,𝛼

v ′ ⇒ T # ”x : v.y
𝜌 , e.y ,𝛼

⇒ -nil

[]𝛼
⇒

[] □𝝆 , []𝛼 ,𝛼

⇒ -cons
v ⇒ T 𝜌 , e,𝛼 v ′ ⇒ U 𝜌 ′, e′,𝛼 ′

v :𝛽 v
′ ⇒

T :U 𝜌 ⊔ 𝜌 ′, e :𝛽 e
′, 𝛽 ⊔ 𝛼 ⊔ 𝛼 ′

⇒ -let-rec
v ⇒ T 𝜌 · 𝜌1, e,𝛼 𝜌1

↠ 𝜌 ′, h′,𝛼 ′

v ⇒ let h in T 𝜌 ⊔ 𝜌 ′, let h′ in e,𝛼 ⊔ 𝛼 ′

⇒ -apply-prim
ni𝛼i

⇒
Ui

𝜌i , ei , 𝛽i (∀i ∈ | #”n |)
m𝛼′
⇒

𝜙 (#”
Un)

⊔
#”𝜌 ,𝜙 (#”e),⊔#”

𝛽
𝜙 #”n
∗ (𝛼 ′) = #”𝛼

⇒ -apply
v ⇒ T ′ 𝜌1 · 𝜌2 · 𝜌3, e, 𝛽 𝜌3, e, 𝛽

⇝
w v ′,𝜎 v ′ ⇒ U 𝜌 , e2,𝛼

𝜌2
↠ 𝜌 ′1, h, 𝛽

′
cl(𝜌1 ⊔ 𝜌 ′1, h, 𝛽 ⊔ 𝛽 ′,𝜎) ⇒ T 𝜌 ′, e1,𝛼

′

v ⇒ T U▶w : T ′ 𝜌 ⊔ 𝜌 ′, e1 e2,𝛼 ⊔ 𝛼 ′

𝜌 ′ ∋𝜌 x : v 𝜌 ′ contains x : v

∋-head

(□𝝆 · x : u) ∋𝜌 ·x : v x : u

∋-tail
𝜌 ′ ∋𝜌 x : u x ≠ y

(𝜌 ′ · y : □) ∋𝜌 ·y : v x : u

𝜌 ↠ 𝜌 ′, h,𝛼 𝜌 backward-generates to 𝜌 ′, h, 𝛼
↠ -rec-defs
vi = cl(𝜌i , hi ,𝛼i ,𝜎i) (∀i ∈ | #”x |)

”x : v ↠
⊔

#”𝜌 , # ”x : 𝜎 ⊔ ⊔#”

h ,
⊔

#”𝛼

Fig. 12. Backward evaluation

into information that can be merged back into the demand on the closure. The function ↠ 𝜌 ,h is
also used in the letrec rule, which otherwise follows the general pattern described above.
Primitive application. Each primitive operation 𝜙 : Int

i → Int must provide a backward-
dependency function 𝜙 #”n

∗ : A → Ai for every #”n ∈ Int
i which specifies how to turn the output

selection 𝛼 ′ on 𝜙 (#”n) into an input selection #”a ∈ Ai on #”n . The rule for primitive application uses
this information to pair each argument ni with its demand 𝛼i and then backwards-evaluate the
argument. The argument demand passed upward is the join of those arising from these subcompu-
tations, and is unrelated to the execution of the primitive itself, similar to a function application.
Here

⊔#”

𝛽 means the fold of ⊔ (with unit ⊥) over the sequence of selection states 𝛽1 · .. · 𝛽 ′| #”x | .
Environment demands #”𝜌 = 𝜌1 · .. · 𝜌 | #”n | are joined (pointwise) in a similar fashion.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:18 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

Other rules. In the variable case, no partial values were constructed during evaluation and there
are no subcomputations, so the argument demand is ⊥, the unit for ⊔. The returned environment
selection demands v for the variable x and □ for all other variables, using the family of backwards
lookup functions − ∋𝜌 x : − of type SelvA → Sel𝝆 A for any x : v ∈ 𝝆 also defined in Figure 12.
(The output of the function is on the left in the relational notation.) For atomic values such as
integers, Booleans and nil, the argument demand is simply the demand 𝛼 associated with the
constructed value, which is also attached to the corresponding expression, and the environment
demand has □ for every variable in the original environment 𝝆, written □𝝆 .
For closures, the argument demand is unpacked along with the other components, preserving

any internal selections on 𝜌 and 𝜎 . Composite values such as records and cons cells follow the
general pattern; thus for records, the argument demands 𝛼 ′i from the subcomputations are joined
with the 𝛼 on the record itself to produce the argument demand passed upward. Record projection
never demands the record constructor itself, but simply promotes the field demand into a record
demand, using ∋ # ”x : v to demand fields other than y with □.

Hole rule. The hole rule, as elsewhere, ensures that the function is defined when v is □, and it is
easy to show that ⇒ T preserves ⊑, and thus �.

Lemma 3.6 (Monotonicity of⇒ T). Suppose T :: 𝝆, e⇒ vwith v ⇒ T 𝜌 , e,𝛼 and v ′ ⇒ T 𝜌 ′, e′,𝛼 ′.
If v ⊑ v ′ then (𝜌 , e,𝛼) ⊑ (𝜌 ′, e′,𝛼 ′).

3.4 Round-Tripping Properties of ⇒T and ⇒ T

We now establish more formally the round-tripping properties, alluded at the beginning of the
section, that relate ⇒T to ⇒ T . For the analyses to be coherent, we expect ⇒T (⇒ T (v)) to produce
a value selection v ′ ⊒ v , and ⇒ T (⇒T (𝜌 , e)) to produce an input selection (𝜌 ′, e′) ⊑ (𝜌 , e). Pairs
of (monotonic) functions f : X → Y and g : Y → X that are related in this way are called Galois
connections. Galois connections generalise isomorphisms: f and g are not quite mutual inverses,
but are the nearest to an inverse each can get to the other. We will present a visual example of
some of these round-tripping properties in § 4.2; here we establish the relevant theorems.

Definition 3.7 (Galois connection). Suppose X and Y are sets equipped with partial orders ≤X and
≤Y . Then monotonic functions f : X → Y and g : Y → X form a Galois connection (f , g) : X → Y
iff g(f (x)) ≥X x and f (g(y)) ≤Y y .

Galois connections are also adjoint functors between poset categories, with left and right adjoints
f and g usually called the lower and upper adjoints, because f approximates an inverse of g from
below, and g an inverse of f from above. Galois connections compose component-wise, so it is useful
to think of them as having a type X → Y , with the direction (by convention) given by the lower
adjoint. If 𝛾 : X → Y is a Galois connection, we will write 𝛾∗ and 𝛾∗ for the lower and upper adjoints
respectively; an important property we will return to is that 𝛾∗ preserves joins and 𝛾∗ preserves
meets. We now show that, for any A, ⇒ T and ⇒T form a Galois connection (Theorem 3.11), by
first establishing that the relevant auxiliary functions also form Galois connections.

Theorem 3.8 (Galois connection for pattern-matching). Suppose w :: v,𝝈 ⇝ 𝝆,𝜿 . Then
(⇝ w , ⇝w) : (Sel𝝆,𝜿 A) × A → Selv,𝝈 A is a Galois connection.

Proof. Included with supplementary materials. □

Lemma 3.9 (Galois connection for environment lookup). Suppose x : v ∈ 𝝆. Then (− ∋𝝆
x : , ∈𝝆 x : −) : SelvA → Sel𝝆 A is a Galois connection.

Proof. Included with supplementary materials. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:19

Theorem 3.10 (Galois connection for recursive bindings). Suppose 𝝆,h ↠ 𝝆 ′. Then
(↠ 𝝆,h, ↠𝝆,h) : Sel𝝆′ A → (Sel𝝆,hA) × A is a Galois connection.

Proof. Included with supplementary materials. □

We assume (rather than prove) that the backward and forward dependency functions 𝜙 #”n
∗ and

𝜙 #”n ∗ provided for every primitive operation 𝜙 : Inti → Int and every #”n of length i form a Galois
connection of type A → Ai . Under this assumption the following holds.

Theorem 3.11 (Galois connection for evaluation). Suppose T :: 𝝆, e⇒ v. Then (⇒ T , ⇒T) :
SelvA → (Sel𝝆,eA) × A is a Galois connection.

Proof. Included with supplementary materials. □

Establishing that (⇒ T , ⇒T) is an adjoint pair might seem rather weak as a correctess property: it
merely ensures that the two analyses are related in a sensible way, not that they actually capture any
useful information. This is a familiar problem from other approximate analyses like type systems
and model checking, where properties like soundness or completeness are essential but do not by
themselves guarantee utility. One could certainly define versions of ⇒ T and ⇒T that are too coarse
grained to be useful, yet still satisfy Theorem 3.11. However Galois connections do at least require
that every tightening or tweak to the forward analysis is paired with a corresponding adjustment
to the backward analysis, and vice-versa. In § 6 we consider how other ideas from provenance and
program slicing might be adapted to provide additional correctness criteria.

4 DE MORGAN DEPENDENCIES FOR BRUSHING AND LINKING
§ 3 addresses the first kind of question we motivated in the introduction (§ 1.1). In particular ⇒ T
can answer questions like: “what data is needed to compute this bar in a bar chart?”, and indeed we
were able to use our implementation to generate Figure 1. The second problem we set ourselves was
how to link selections between cognate outputs, i.e. outputs computed from the same data (§ 1.2).
This is called “brushing and linking” in data visualisation [Becker and Cleveland 1987], and has been
extensive studied as an interaction paradigm, but with little emphasis on techniques for automation.
Intuitively, the problem has a bidirectional flavour: one must consider how dependencies flow
backward from a selection in one output to a selection v in the common data, and then forward
from the selected data v to a corresponding selection in the other output. A natural question then is
whether the analysis established in § 3 can supply the information required to support an automated
solution.

An immediate problem is that the flavour of the forward dependency required here differs from
that provided by the forward analysis ⇒T defined in § 3.2. That was able to answer the question:
what can we compute given only the data selected in v? But to identify the related data in another
output, we must determine not what the input selection v is sufficient for, but what it is necessary
for: those parts of the other output that depend on v . In fact the question can be formulated as a
kind of dual: what would we not be able to compute if the data selected in v were unavailable?

4.1 De Morgan Duality
Why ⇒T is unsuitable as a forward dependency relation for linking cognate outputs can also
be understood in terms of compositionality. SupposeV1 andV2 are the lattices of selections for
two views computed from a shared input source, and D is the lattice of selections for the shared
input. Using the procedure given in § 3, we can obtain two Galois connections 𝛾 : V1 → D and
𝛿 : V2 → D as shown in Figure 13a. (The reader can ignore Figure 13b for the moment.)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:20 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

V1 D V2

V1 D V2

𝛾 𝛿

𝛾∗

𝛿∗

𝛿∗

𝛾∗

(a) 𝛾 and 𝛿 cannot be composed

V1 D V2

V1 D D V2 V2

𝛾 𝛿◦

𝛾∗ ¬D

𝛿∗

¬V2

¬V2

𝛿∗

¬D𝛾∗

(b) Composing via De Morgan duality

Fig. 13. Dualising 𝛿 : V2 → D for composition with 𝛾 : V1 → D

Unfortunately, 𝛾 and 𝛿 are not composable, as their types makes clear. While the upper adjoint
𝛿∗ : D → V2 has the correct type to compose with the lower adjoint 𝛾∗ : V1 → D, the result is
not a Galois connection: 𝛿∗ preserves meets, whereas 𝛾∗ preserves joins. However, it turns out that
if selections are closed under complement, we can derive an analysis of what is necessary for a
given input selection from an analysis of what it is sufficient for. The effect is to invert 𝛿 , yielding a
Galois connection 𝛿◦ with a type that allows it to compose with 𝛾 . Then the composite 𝛿◦ ◦ 𝛾 is a
Galois connection linkingV1 toV2 via D, as shown in Figure 13b, offering a general mechanism
for brushing and linking, with nice round-tripping properties. We now unpack this in more detail.
First we shift settings from the lattices used in § 3 to Boolean lattices (or Boolean algebras)
A = ⟨A,⊤,⊥,⊓,⊔,¬⟩, which are lattices equipped with an involution ¬ : A → A called
complement. Boolean algebras satisfy complementation laws x ⊓ ¬x = ⊥ and x ⊔ ¬x = ⊤ and De
Morgan laws ¬x ⊓ ¬y = ¬(x ⊔ y) and ¬x ⊔ ¬y = ¬(x ⊓ y). If A is a Boolean algebra, then SelvA
is also a Boolean algebra, with the Boolean operations, and in particular ¬v : SelvA → SelvA,
defined pointwise. An additional distinguished value selection ■ serves as the negation of □. The
two-point lattice 2 we used to illustrate § 3 is also a Boolean algebra ⟨{tt, ff}, tt, ff,∧,∨,¬⟩ with ¬
corresponding to logical negation.

It is an easy consequence of the complementation and De Morgan laws that any meet-preserving
operation g : A → B on Boolean algebras has a join-preserving De Morgan dual g◦ : A → B
given by ¬B ◦ g ◦ ¬A , and any join-preserving operation h has a meet-preserving De Morgan dual
h◦ defined similarly. Moreover if h is the lower adjoint of g, then g◦ is the lower adjoint of h◦. Thus
Galois connections on Boolean algebras also admit a (contravariant) notion of De Morgan duality,
defined component-wise.

Definition 4.1 (De Morgan dual of a Galois connection). Suppose A and B are Boolean algebras
and 𝛾 : A → B is a Galois connection (𝛾∗,𝛾∗). Define the De Morgan dual 𝛾◦ of 𝛾 to be the Galois
connection (𝛾∗◦,𝛾∗◦) : B → A.

Dualising a Galois connection flips the direction of the arrow by swapping the roles of the upper
and lower adjoints. So while 𝛾 : A → B and 𝛿 : C → B are not composable, 𝛾 and 𝛿◦ : B → C are,
and the composition is achieved by transforming 𝛿∗ from something which determines what we can
compute with v into something which determines what we cannot compute without v . This offers
a principled basis for an automated brushing and linking feature between cognate computations T
and U. When the user selects part of the output of T , we can use ⇒ T to compute the needed data
v , and then use ⇒U◦ to compute the parts of the output of U that depend on v . This is the approach
implemented in Fluid, and we used this to generate Figure 2 in § 1.2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:21

1 let zero n = const n;

2 wrap n n_max = ((n - 1) `mod` n_max) + 1;

3 extend n = min (max n 1);

4 nth2 i j xss = nth (j - 1) (nth (i - 1) xss);

5

6 let convolve image kernel method =

7 let ((m, n), (i, j)) = (dims image, dims kernel);

8 (half_i, half_j) = (i `quot` 2, j `quot` 2);

9 area = i * j

10 in ⟨ let weightedSum = sum [

11 image!(x, y) * kernel!(i' + 1, j' + 1)

12 | (i', j') ← range (0, 0) (i - 1, j - 1),

13 let x = method (m' + i' - half_i) m,

14 let y = method (n' + j' - half_j) n,

15 x ≥ 1, x ≤ m, y ≥ 1, y ≤ n

16] in weightedSum `quot` area

17 | (m', n') in (m, n) ⟩;

1 let emboss = [[-2, -1, 0],

2 [-1, 1, 1],

3 [0, 1, 2]];

4 filter = ⟨ nth2 i j emboss

5 | (i, j) in (3, 3) ⟩;
6 image' = [[15, 13, 6, 9, 16],

7 [12, 5, 15, 4, 13],

8 [14, 9, 20, 8, 1],

9 [4, 10, 3, 7, 19],

10 [3, 11, 15, 2, 9]];

11 image = ⟨ nth2 i j image'

12 | (i, j) in (5, 5) ⟩
13 in convolve image filter zero

Fig. 14. Matrix convolution example, with methods zero, wrap and extend for dealing with boundaries

4.2 Example: Matrix Convolution
We now illustrate the (⇒T ◦,⇒ T

◦) Galois connection, contrasting it with (⇒ T , ⇒T), using an
example which computes the convolution of a 5 × 5 matrix with a 3 × 3 kernel. Convolution has an
intuitive dependency structure and the values involved have an easy visual presentation, making it
useful for conveying the flavour of the four distinct (but connected) dependency relations that arise
in the framework. The source code for the example is given in Figure 14, and shows the convolve

function, plus zero, wrap and extend which provide different methods for handling the boundaries
of the input matrix. The angle-bracket notation is used to construct matrices, which were omitted
from § 2. (The formal treatment is similar to records.)

Fluid was used to generate the diagrams in Figure 15, which show the four dependency relations
and two of their four possible round-trips. Figure 15a shows the (⇒ T , ⇒T) Galois connection
defined in § 3.4. In the upper figure, the user selects (in green) the output cell at position (2, 2)
(counting rows downwards from 1). This induces a demand (via the lower adjoint ⇒ T) on the
input matrix image and the kernel filter, revealing (in blue) that the entire kernel was needed to
compute the value 1, but only some of the input matrix. In particular the elements at (1, 3) and
(3, 1) in image were not needed, because of zeros present in filter. If we then “round-trip” that
input selection, computing the corresponding availability on the output using the upper adjoint ⇒T ,
the green selection grows: it turns out that the data needed to make (2, 2) available are sufficient to
make (1, 1) available as well.
Figure 15b shows the De Morgan dual (⇒T ◦,⇒ T

◦). In the upper part of the figure, the user
selects (green) kernel cell (1, 2) to see the output cells that depend on it. This is computed using
the De Morgan dual ⇒T ◦. First we negate the input selection, marking (1, 2) as unavailable, and
all other inputs as available. Then we forward-analyse with ⇒T to determine that with this data
selection, we can only compute the top row of the output. (If it seems odd that we can compute
even the top row, notice that the example uses the method zero for dealing with boundaries; wrap
or extend would give a different behaviour.) Then we negate that top row selection to produce the
(blue) output selection shown in the figure. These are exactly the output cells which depend on
kernel cell (1, 2) in the sense that they cannot be computed if that input is unavailable.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:22 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

(a) Galois dependency (⇒ T , ⇒T) (b) De Morgan dual (⇒T ◦,⇒ T
◦)

Fig. 15. Upper and lower pairs are dual; left and right pairs are adjoint

We can then round-trip this output selection using the De Morgan dual ⇒ T
◦. We first negate the

blue output selection (selecting the top row of the output again), and then use ⇒ T to determine the
needed inputs, which turn out to be the top two rows of image, and the top row of filter. Negating
again produces the green output selection shown in the lower figure. Thus the backwards De
Morgan dual computes the inputs that would not be needed if the selected outputs were not needed:
more economically, the inputs that are only needed for the selected output. Here the round-trip
reveals that if kernel cell (1, 2) is unavailable, then the entire top row of the kernel might as well
have been unavailable too, and similarly for the bottom 3 rows of the input.

4.3 Relationship to Galois Slicing
The De Morgan dual puts us in a better position to consider the relationship between the present
system and earlier work on Galois slicing, a program slicing technique that has been explored for
pure functional programs [Perera 2013; Perera et al. 2012], functional programswith effects [Ricciotti
et al. 2017], and 𝜋-calculus [Perera et al. 2016]. We consider other related work in § 6.1.

Galois slicing operates on lattices of slices, which are programs (or values) where parts deemed
irrelevant are replaced by a hole □. (If we think of the notion of selection defined in § 3.1.1 as picking
out a subset of the paths in a term, then slices resembles selections which are prefix-closed, meaning
that if a given path in a term is selected, then so are all of its prefixes.) For a fixed computation,
a meet-preserving forward-slicing function is defined which takes input slices to output slices,
discarding parts which cannot be computed because the needed input is not present, plus a join-
preserving backward-slicing function taking output slices to input slices, retaining the parts needed
for the output slice. For example Figure 16a shows a computation with output (0.4, 0.6), and
Figure 16b gives the backward slice for output slice (0.4, □). Forward and backward slicing, for a
given computation, form a Galois connection, giving the analyses the nice round-tripping properties
we motivated in § 3.4.

Unfortunately, the notion of slice does not lend itself to computing dependencies where the
needed input or output is a proper part of a value, such as a component of a tuple. Differential
slicing [Perera et al. 2012] improves on this by using Galois slicing to compute a pair of input slices
(e, e′) for a pair of output slices (v , v ′) where v ⊑ v ′. By monotonicity, e ⊑ e′. This can be used to

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:23

1 let (x, y) = (2, 3);

2 sum = x + y in

3 if sum == 0

4 then (0, 0)

5 else (x / sum, y / sum)

6 ⇒ (0.4, 0.6)

(a) Original program

1 let (x, y) = (2, 3);

2 sum = x + y in

3 if sum == 0

4 then □
5 else (x / sum, □)
6 ⇒ (0.4, □)

(b) Backward slice for (0.4, □)

1 let (x, y) = (2, 3);

2 sum = x + y in

3 if sum == 0

4 then □
5 else (□, □)
6 ⇒ (□, □)

(c) Backward slice for spine (□, □)

1 let (x, y) = (2, 3);

2 sum = x + y in

3 if sum == 0

4 then (0, 0)

5 else (x / sum , y / sum)

6 ⇒ (0.4, 0.6)

(d) Differential backward slice for (0.4, □)

Fig. 16. Differential Galois slicing selects input (blue) needed only for selected output (green)

compute a (differential) slice for an arbitrary subtree, by setting v to be the “spine” of the original
output up to the location of the subtree, and v ′ to be v with the subtree of interest plugged back in.
Here we could focus on the value 0.4 in the output by computing the backward slice for (□, □)
(Figure 16c) and then comparing it with the backward slice for (0.4, □), generating a differential
slice where the parts that are different are highlighted (Figure 16d). But although it supports a notion
of selection which is closer to what we need, the differential slice highlights only the program parts
that are needed exclusively by the selected output, and as such underapproximates the dependency
information needed for data linking. (In fact differential slicing is similar to the De Morgan dual⇒

T
◦.) Because is this example 2 and 3 are needed to compute the spine as well (in order to decide

which conditional branch to execute), they are excluded from the differential slice, whereas our
backward analysis ⇒ T is able to directly determine that both 2 and 3 are needed to compute 0.4.

5 GALOIS CONNECTIONS FOR DESUGARING
Elaborating a richer surface language into a simpler core is a common pattern with well known
benefits. It can, however, make it harder to express certain information to the programmer in terms
of the surface language. We face this problem with the analysis in § 3, which links outputs not only
to inputs, but also to expressions responsible for introducing data. We could use this information in
an IDE to link structured outputs to relevant code fragments, but only if we are able to map term
selections back to the surface program. We now sketch a bidirectional desugaring procedure which
addresses this, and which composes with the Galois dependency analysis defined in § 3.

5.1 Surface Language Syntax
The surface language, Fluid, extends the core syntax with list notation [s,…,s′], Haskell 98-style
list comprehensions [Jones 2003], list enumerations, first-class primitives and piecewise function
definitions and pattern-matching, as shown in Figure 17. Typing rules are included with the
supplementary materials. We attach selection states 𝛼 to surface terms s, t that desugar to core
terms with selections, and let s, t range over “raw” surface terms, which are isomorphic to the term
selections where the type of selection states is the unit lattice 1.

Figure 18 shows how the end-to-end mapping would appear to a user. (For illustrative purposes
the library function map and some raw data are included in the same source file.) On the left, the user

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:24 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

Identifier
x , y ::= …

⊕ operator name

Surface term
s, t ::= …

(⊕) first-class operator
s ⊕ s′ binary application
let

#”g in s recursive functions
if s then s else s if
match s as # ”p = s match
let p = s in s structured let
[𝛼 s r non-empty list
[s .. s] list enum
[s | #”q]𝛼 list comprehension

List rest term
r ::=]𝛼 end

,𝛼 s r cons

Recursive function
g ::= x : #”c

Clause
c ::= #”p = s

Pattern
p ::= x variable

(# ”x : p) record
[] nil
p : p cons
[p o non-empty list

List rest pattern
o ::=] end

, p o cons

Qualifier
q ::= s guard

let p = s declaration
p← s generator

Fig. 17. Syntax for surface language, with selection states

selects a cons cell (green) in the output; by backwards evaluating and then backwards desugaring,
we are able to highlight the list comprehension, the cons in the second clause of map, and both
occurrences of the constant "Hydro". These last two are highlighted because the selected cons cell
was constructed by eliminating a Boolean that was in turn constructed by the primitive == operator,
which consumed the two strings. The user might then conjecture that the two occurrences of "Geo"
were somehow responsible for the inclusion of the third cons cell in the output; they can confirm
this by making the green selection on the right. (Highlighting == too would clearly be helpful here;
we discuss this possibility in § 6.1.) The grey selection is included to contrast the cons highlighting
with the data demanded by the list elements themselves, which is quite different.

1 let map f [] = [];

2 map f (x : xs) = f x : map f xs;

3 let data = [

4 { energyType: "Bio", output: 6.2 },

5 { energyType: "Hydro" , output: 260 },

6 { energyType: "Solar", output: 19.9 },

7 { energyType: "Wind", output: 91 },

8 { energyType: "Geo", output: 14.4 }

9];

10 let xs = [row.output

11 | type ← ["Hydro" , "Solar", "Geo"],

12 row ← data, row.energyType == type

13] in

14 map (fun x → floor (x / sum xs * 100)) xs

15 ⇒ (88 : (6 : (4 : [])))

1 let map f [] = [];

2 map f (x : xs) = f x : map f xs;

3 let data = [

4 { energyType: "Bio", output: 6.2 },

5 { energyType: "Hydro", output: 260 },

6 { energyType: "Solar", output: 19.9 },

7 { energyType: "Wind", output: 91 },

8 { energyType: "Geo" , output: 14.4 }

9];

10 let xs = [row.output

11 | type ← ["Hydro", "Solar", "Geo"],

12 row ← data, row.energyType == type

13] in

14 map (fun x → floor (x / sum xs * 100)) xs

15 ⇒ (88 : (6 : (4 : [])))

Fig. 18. Source selections (blue) resulting from selecting different list cells (green)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:25

s ↠ e s forward-desugars to e

↠-nil

[]𝛼 ↠ []𝛼

↠-cons
s ↠ e s′ ↠ e′

s :𝛼 s′ ↠ e :𝛼 e′

↠-non-empty-list
s ↠ e r ↠ e′

[𝛼 s r ↠ e :𝛼 e′

↠-list-comp-done
s ↠ e

[s | 𝜀]𝛼 ↠ e :𝛼 []𝛼

↠-list-comp-gen
[s | #”q]𝛼 ↠ e p, e ⇀ 𝜎 𝜎 ,𝛼 ↗p 𝜎

′ s′ ↠ e′

[s | p← s′ · #”q]𝛼 ↠ concatMap λ𝜎 ′ e′

↠-list-comp-guard
[s | #”q]𝛼 ↠ e s′ ↠ e′

[s | s′ · #”q]𝛼 ↠ λ{true: e, false: []𝛼 } e′

↠-list-comp-decl
[s | #”q]𝛼 ↠ e p, e ⇀ 𝜎 s′ ↠ e

[s | let p = s′ · #”q]𝛼 ↠ λ𝜎 e

e ↠ t s e backward-desugars along t to s
↠ -nil

[]𝛼
↠

[] []𝛼

↠ -cons
e ↠ t s e′ ↠ t′ s

′

e :𝛼 e′ ↠ t : t′ s :𝛼 s′

↠ -non-empty-list
e ↠ t s e′ ↠ r r

′

e :𝛼 e′ ↠ [t r [𝛼 s r ′

↠ -list-comp-done
e ↠ t s

e :𝛼′ []𝛼
↠

[t | 𝜀] [s | 𝜀]𝛼⊔𝛼′
↠ -list-comp-gen
e ↠ t s 𝜎 ↘p 𝜎

′, 𝛽 𝜎 ′ ⇀ p e′ e′ ↠ [t′ | #”q] [s′ | #”q ′]𝛽′

concatMap λ𝜎 e ↠ [t′ | p← t · #”q] [s′ | p← s · #”q ′]𝛽⊔𝛽′

↠ -list-comp-guard
e′ ↠ t′ s

′ e ↠ [t | #”q] [s | #”q ′]𝛽
λ{true: e, false: []𝛼 } e′ ↠ [t | t′ · #”q] [s | s′ · #”q ′]𝛼⊔𝛽

↠ -list-comp-decl
𝜎 ⇀

p e′ e′ ↠ [t′ | #”q] [s′ | #”q ′]𝛽 e ↠ t s

λ𝜎 e ↠ [t′ | let p=t · #”q] [s′ | let p = s · #”q ′]𝛽

r ↠ e r forward-desugars to e

↠-list-rest-end

]𝛼 ↠ []𝛼

↠-list-rest-cons
s ↠ e r ↠ e′

(,𝛼 s r) ↠ e :𝛼 e′

e ↠ r r
′ e backward-desugars along r to r ′

↠ -list-rest-end

[]𝛼
↠

]]𝛼

↠ -list-rest-cons
e ↠ t s e′ ↠ r r

′

e :𝛼 e′ ↠ (, t r) (,𝛼 s r ′)

Fig. 19. Forwards and backwards desugaring (selected rules only)

5.2 Forward Desugaring
To define the forward evaluation function ⇒T in § 3.2, we performed a regular evaluation using
⇒ to obtain a trace T , and then defined ⇒T by recursion over T , with T guiding the analysis in
the presence of □. There are no holes in the surface language, so we can take a simpler approach,
defining a single forward desugaring relation ↠, and then showing that for every raw surface term
t ↠ e, there is a monotonic function ↠t : SeltA → SeleA, which is simply ↠ domain-restricted
to SeltA. The full definition of ↠ is included with the supplementary materials; Figure 19 gives a
representative selection of the rules.

The definition follows a similar pattern to ⇒T . At each step, we take the meet of the availability
on any parts of s being consumed at that step, and use that as the availability of any parts of e
being generated at that step. Thus the rules for list notation simply transfer the selection state 𝛼 on
the opening and closing brackets [𝛼 and]𝛼 to the corresponding cons and nil of the resulting list,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:26 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

and those on intervening delimiters ,𝛼 to the corresponding cons. List comprehensions [s | #”q]𝛼
have a rule for each kind of qualifier q at the head of #”q , plus a rule for when #”q is 𝜀. The general
pattern is to push the 𝛼 on the comprehension itself through recursively, so it ends up on all core
terms generated during its elaboration: in particular the false branch when q is a guard, and the
singleton list when #”q is empty. Auxiliary relations ⇀ and↗p (included with the supplementary
materials) transfer availability on guards and generators onto the eliminators they elaborate into.

5.3 Backward Desugaring
The backwards analysis is then defined as a family of backward desugaring functions ↠ t: SeleA →
SeltA for any t ↠ e, with the raw surface term t guiding the analysis backwards. (The role of t
in disambiguating the backwards rules should be clear if you consider that e typically matches
multiple rules but only one for a given t.) Figure 19 gives some representative rules; the full
definition is included with the supplementary materials. To reverse a desugaring step, we take
the join of the demand on any parts of e which were constructed at this step, and use that as the
demand on the parts of s which were consumed at this step, turning demand on the core term into
(minimal) demand on the surface term. Thus the effect of the list comprehension rules and auxiliary
judgements is to set the demand on the comprehension itself to be the join of the demand of all the
syntax generated during the elaboration of the comprehension, using auxiliary judgments↘p and
⇀

p to transfer demand from eliminators back onto the guards and generators.

5.4 Round-Tripping Properties and Compositionality
It is easy to verify that ↠t and

↠
t are monotonic. Moreover they form an adjoint pair.

Theorem 5.1 (Galois connection for desugaring). Suppose t ↠ e. Then (↠ t , ↠t) : SeleA →
SeltA is a Galois connection.

Proof. Included with supplementary materials. □

The (↠ t , ↠t) Galois connection readily composes with (⇒ t , ⇒t) to produce surface-language
selections like the ones shown in Figure 18. This is useful, although somewhat monolithic. In future
work we will investigate techniques for backwards desugaring at arbitrary steps in the computation,
perhaps by interleaving desugaring with execution in the style of Pombrio and Krishnamurthi
[2014], as well as presenting selections on intermediate values (such as lists) in the surface language,
even though they were not obtained via desugaring.

6 CONCLUSION
Our research was motived by the goal of making computational outputs which are automatically
able to reveal how they relate to data in a fine-grained way. A casual reader whowants to understand
or fact-check a chart, or a scientist evaluating another’s work, should be able to do so by interacting
directly with an output. Recent work by Walny et al. [2019] suggests that developers would also
benefit from such a feature while implementing visualisations, for example to check whether a
quantity is represented by diameter or area in a bubble chart.

Galois connections provide an appealing setting for this problem because of their elegant round-
tripping properties. However, existing dynamic analysis techniques based on Galois connections
do not lend themselves to richly structured outputs like visualisations and matrices. We presented
an approach that allows focusing on arbitrary substructures, which also means data selections
can be inverted. This enables linking not just of outputs to data, but of outputs to other outputs,
providing a mathematical basis for a widely used (but so far ad hoc) feature in data visualisation.
We implemented our approach in Fluid, a realistic high-level functional programming language.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:27

6.1 Other Related Work and Future Directions
We close by considering some limitations and opportunities in the context of other related work.
Galois slicing [Perera et al. 2012, 2016; Ricciotti et al. 2017] was considered in § 4.3.
Executable slicing. Executable slices [Hall 1995] are programs with some parts removed, but

which are still executable. Our approach computes data selections, not executable slices, but such a
notion has obvious relevance in data science: “explaining” part of a result should (arguably) entail
being able to recompute it. Expression provenance [Acar et al. 2012] explains how primitive values
are computed using only primitive operations; however, this still omits crucial information, and
does not obviously generalise to structured outputs. Work on executable slicing in term rewriting
[Field and Tip 1998] could perhaps be adapted to structured data and combined with dependency
tracking for higher-order data (§ 3.1).

Dynamic program analysis. Dynamic analysis techniques like dataflow analysis [Chen and Poole
1988] and taint tracking [Reps et al. 1995] tend to focus on variables, rather than parts of structured
values, and lack round-tripping properties; Galois dependencies have a clear advantage here. A
limitation of dynamic techniques which is shared by our approach is that they can usually only
reveal that certain dependencies arise, not why, which requires analysing path conditions [Hammer
et al. 2006]. In a data science setting this would clearly be valuable too, and it would be interesting
to see if the benefits of the Galois framework can be extended to techniques for computing dynamic
path conditions.

Brushing and linking. Brushing and linking has been extensive studied in the data visualisation
community [Becker and Cleveland 1987; McDonald 1982], but although Roberts and Wright [2006]
argued it should be ubiquitous, no automated method of implementation has been proposed to
date. Geospatial applications like GeoDa [Anselin et al. 2006] hard-code view coordination features
into specific views, and libraries like d3.js and Plotly support ad hoc linking mechanisms, with
varying degrees of programmer effort required. No existing approach provides automation or
round-tripping guarantees, or is able to provide data selections explaining why visual selections
are linked.
Data provenance in data visualisation. A recent vision paper by Psallidas and Wu [2018] is the

only work we are aware of that proposes that brushing and linking, and related view cooordination
features like cross-filtering, can be understood in terms of data provenance. In a relational (query
processing) setting, where the relevant notion of provenance is lineage, they propose backward-
analysing to data, and then forward-analysing to another view, although again without the round-
tripping features of Galois connections. Moreover theirs is primarily a concept paper, proposing a
research programme, rather than solving a specific problem.

7 ACKNOWLEDGEMENTS
Perera and Petricek were supported by The UKRI Strategic Priorities Fund under EPSRC Grant
EP/T001569/1, particularly the Tools, Practices and Systems theme within that grant, and by The Alan
Turing Institute under EPSRC grant EP/N510129/1. Wang was supported by Expressive High-Level
Languages for Bidirectional Transformations, EPSRC Grant EP/T008911/1.

REFERENCES
Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2012. A Core Calculus for Provenance. In Proceedings of the

First International Conference on Principles of Security and Trust (Tallinn, Estonia) (POST ’12). Springer-Verlag, Berlin,
Heidelberg, 410–429. https://doi.org/10.1007/978-3-642-28641-4_22

Luc Anselin, Ibnu Syabri, and Youngihn Kho. 2006. GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis
38, 1 (2006), 5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

7:28 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang

Richard A. Becker and William S. Cleveland. 1987. Brushing Scatterplots. Technometrics 29, 2 (May 1987), 127–142.
https://doi.org/10.1080/00401706.1987.10488204

Richard Bird and Lambert Meertens. 1998. Nested datatypes. In Mathematics of Program Construction, Johan Jeuring (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 52–67.

Gérard Boudol and Ilaria Castellani. 1989. Permutation of transitions: An event structure semantics for CCS and SCCS.
In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, J.W. Bakker, W.-P. Roever, and
G. Rozenberg (Eds.). Lecture Notes in Computer Science, Vol. 354. Springer, 411–427. https://doi.org/10.1007/BFb0013028

Nadieh Bremer and Marlieke Ranzijn. 2015. Urbanization in East Asia between 2000 and 2010. http://nbremer.github.io/
urbanization/.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why and Where: A Characterization of Data Provenance. In
Proceedings of the 8th International Conference on Database Theory (ICDT ’01). Springer-Verlag, London, UK, 316–330.

TY Chen and PC Poole. 1988. Dynamic dataflow analysis. Information and Software Technology 30, 8 (1988), 497–505.
https://doi.org/10.1016/0950-5849(88)90146-2

Richard H. Connelly and F. Lockwood Morris. 1995. A generalization of the trie data structure. Mathematical Structures in
Computer Science 5, 3 (1995), 381–418. https://doi.org/10.1017/S0960129500000803

A. De Lucia, A.R. Fasolino, and M. Munro. 1996. Understanding function behaviors through program slicing. InWPC ’96.
4th Workshop on Program Comprehension. 9–18. https://doi.org/10.1109/WPC.1996.501116

John Field and Frank Tip. 1998. Dynamic Dependence in Term Rewriting Systems and its Application to Program Slicing.
Information and Software Technology 40, 11–12 (November/December 1998), 609–636.

Jeremy Gibbons. 2017. APLicative Programming with Naperian Functors. In European Symposium on Programming (Lecture
Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). 568–583. https://doi.org/10.1007/978-3-662-54434-1_21

Sebastian Graf, Simon Peyton Jones, and Ryan G Scott. 2020. Lower your guards: a compositional pattern-match coverage
checker. Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–30.

Robert J. Hall. 1995. Automatic extraction of executable program subsets by simultaneous dynamic program slicing.
Automated Software Engineering 2 (1995), 33–53. https://doi.org/10.1007/BF00873408

Christian Hammer, Martin Grimme, and Jens Krinke. 2006. Dynamic path conditions in dependence graphs. Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, 58–67. https:
//doi.org/10.1145/1111542.1111552

Ralf Hinze. 2000. Generalizing generalized tries. Journal of Functional Programming 10, 4 (2000), 327–351. https:
//doi.org/10.1017/S0956796800003713

Simon L. Peyton Jones. 2003. Haskell 98: Introduction. Journal of Functional Programming 13, 1 (2003), 0–6.
Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Proceedings of the 1st Annual ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (Boston, Massachusetts) (POPL ’73). Association for
Computing Machinery, New York, NY, USA, 194–206. https://doi.org/10.1145/512927.512945

John Alan McDonald. 1982. Interactive graphics for data analysis. Ph.D. Dissertation.
Greg Miller. 2006. A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science 314, 5807 (2006), 1856–1857.

https://doi.org/10.1126/science.314.5807.1856
James Newsome and Dawn Song. 2005. Dynamic taint analysis for automatic detection, analysis, and signature generation

of exploits on commodity software. In Network and Distributed Systems Security Symposium.
Roland Perera. 2013. Interactive Functional Programming. Ph.D. Dissertation. University of Birmingham, Birmingham, UK.

http://etheses.bham.ac.uk/4209/.
Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012. Functional Programs That Explain Their Work. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (Copenhagen, Denmark)
(ICFP ’12). ACM, New York, NY, USA, 365–376. https://doi.org/10.1145/2364527.2364579

Roly Perera, Deepak Garg, and James Cheney. 2016. Causally Consistent Dynamic Slicing. In Concurrency Theory, 27th
International Conference, CONCUR ’16 (Leibniz International Proceedings in Informatics (LIPIcs)), Josée Desharnais and
Radha Jagadeesan (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.org/10.
4230/LIPIcs.CONCUR.2016.18

Justin Pombrio and Shriram Krishnamurthi. 2014. Resugaring: Lifting Evaluation Sequences through Syntactic Sugar.
SIGPLAN Notices 49, 6 (Jun 2014), 361–371. https://doi.org/10.1145/2666356.2594319

Fotis Psallidas and Eugene Wu. 2018. Provenance for Interactive Visualizations. In Workshop on Human-In-the-Loop Data
Analytics (HILDA 2018). ACM.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,
California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 49–61. https://doi.org/10.1145/
199448.199462

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Linked Visualisations via Galois Dependencies 7:29

Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. 2017. Imperative Functional Programs That Explain Their
Work. Proceedings of the ACM on Programming Languages 1, ICFP, Article 14 (2017), 28 pages. https://doi.org/10.1145/
3110258

J. C. Roberts and M. A. E. Wright. 2006. Towards Ubiquitous Brushing for Information Visualization. In Tenth International
Conference on Information Visualisation (IV’06). 151–156. https://doi.org/10.1109/IV.2006.113

A. Sabelfeld and A. C. Myers. 2003. Language-Based Information-Flow Security. IEEE Journal on Selected Areas in
Communications 21, 1 (Jan 2003), 5–19. https://doi.org/10.1109/JSAC.2002.806121

Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsuphasawat, Arvind Satyanarayan, Eitan
Lees, Ilia Timofeev, Ben Welsh, and Scott Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. The
Journal of Open Source Software 3, 32 (2018). https://doi.org/10.21105/joss.01057

Jagoda Walny, Christian Frisson, Mieka West, Doris Kosminsky, Søren Knudsen, Sheelagh Carpendale, and Wesley Willett.
2019. Data Changes Everything: Challenges and Opportunities in Data Visualization Design Handoff. IEEE Transactions
on Visualization and Computer Graphics PP (08 2019), 1–1. https://doi.org/10.1109/TVCG.2019.2934538

Mark Weiser. 1981. Program slicing. In Proceedings of the 5th International Conference on Software Engineering (San Diego,
California, USA) (ICSE ’81). IEEE Press, Piscataway, NJ, USA, 439–449. https://doi.org/10.5555/800078.802557

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 7. Publication date: January 2022.

Part VI

Conclusions

229

Chapter 14

Contributions and outlook

The work presented in this thesis is the result of my long-term effort to rethink data sci-ence tooling from the perspective of programming languages research. The research hasbeen undertaken at multiple institutions (Microsoft Research, The Alan Turning Institute,University of Kent) and involved collaboration with a number of co-authors.The work presented in this thesis is not merely theoretical. An important contributionof this thesis is a practical implementation of the presented programming systems, lan-guages and libraries. The resulting software packages have been made available as open-source. Somewere developed by a larger teamof collaborators, while others later receivedvaluable contributions from the broader community. In some cases, industry adopters fur-ther developed the project and became maintainers of the tool.This chapter briefly reviewsmy own contributions to the papers included in this thesis,as well as my role in the resulting open-source projects. I will then reflect on the newperspective on programming and data science tooling that emerges from the work, as wellas future research directions inspired by the presented work.
14.1 Contributions to included publications

The publications selected for this thesis focus on an independent research direction that Ihave been pursuing after completing my PhD. I often developed the initial idea or a proto-type, butmany paperswere the result of a broader collaboration or an attempt to integratethe idea with the work of my colleagues and collaborators.
• Chapter 6 (Petricek et al., 2016) – I developed the initial version of the library, de-veloped the formal model, and wrote most of the paper. Gustavo Guerra signifi-cantly improved the initial implementation. Don Syme first developed the CSV typeprovider, assisted with the formalization, and provided the problem framing.
• Chapter 7 (Petricek, 2017) – I am the sole author of the paper, but some aspects ofthe work have benefited from discussion with Don Syme.
• Chapter 8 (Petricek, 2020) – I am the sole author of the paper, but the work hasbenefited from discussions with Dominic Orchard, Stephen Kell, Roly Perera andJonathan Edwards and detailed feedback from Dominic Orchard.
• Chapter 9 (Petricek et al., 2018) – I developed the prototype implementation of thepresented system and wrote most of the paper. Charles Sutton provided inspirationfor work on provenance and James Geddes shaped the system design.

230

• Chapter 10 (Petricek, 2022) – I am the sole author, but valuable implementationwork, adjacent to the paper, has been done by May Yong and Nour Boulahcen.
• Chapter 11 (Petricek et al., 2023) – Thework on individual AI assistants has been doneby the first five authors. I proposed the initial formal model and system architectureand led paper writing jointly with Christopher Williams.
• Chapter 12 (Petricek, 2021) I am the sole author of the paper, but the earliest formof the idea was born in discussion with Mathias Brandewinder.
• Chapter 13 (Perera et al., 2022) – The work was led by Roly Perera, Minh Nguyencontributed to implementation and formalization andMengWang to paper writing.I was involved in the original conceptual development with Roly Perera and writing.

14.2 Open-source software contributions

The ideas discussed in the earlier parts of the thesis have been implemented in severalopen-source software packages that are available under the permissive Apache 2.0 (F#Data) and MIT (all other projects) licenses.
• F# Data (https://github.com/fsprojects/FSharp.Data) has became a widely-used F# li-brary for data access. It implements utilities, parsers, and type providers for workingwith structured data in multiple formats (XML, JSON, HTML, and CSV). I developedthe initial version of the library and later described it in the paper included as Chap-ter 6. The library has since attracted over 100 industry contributors and furtherdevelopment has been led by industry maintainers including Gustavo Guerra, ColinBull, Chet Husk, Taylor Wood, Steffen Forkmann, Don Syme and others.
• The Gamma (https://github.com/the-gamma) is a simple data exploration environ-ment for non-programmers such as data journalists. It implements the iterativeprompting mechanism for data access (Chapters 10 and 7) and live preview mecha-nism (Chapter 8). I createdmost of the implementation. May Yong, Nour Boulahcen,and TomKnowles implemented support for further data sources andworked on casestudies using the system. Live demos using the environment in a web browser canbe found at https://thegamma.net and https://turing.thegamma.net.
• Wrattler (https://github.com/wrattler) is an experimental notebook system describedin Chapter 9 that tracks dependencies between cells, makes it possible to combinemultiple languages in a single notebook and hosts AI assistants for data wranglingdescribed in Chapter 11. I created the initial prototype and oversaw later develop-ment donemainly byMay Yong andNick Barlowwith contributions fromRoly Perera,Camila Rangel Smith, Gertjan van den Burg, and others. More information can befound at http://www.wrattler.org.
• Compost.js (https://github.com/compostjs) is a composable library for creating datavisualizations described in Chapter 12. Although the library is implemented in the F#language, it is compiled to JavaScript and provides a convenient interface for Java-Script users. I am currently the sole developer of the library, although it also servedas a design inspiration for some aspects of Fluid (below). A range of demos illustrat-ing the use of the library can be found online at https://compostjs.github.io.

https://github.com/fsprojects/FSharp.Data
https://github.com/the-gamma
https://thegamma.net
https://turing.thegamma.net
https://github.com/wrattler
http://www.wrattler.org
https://github.com/compostjs
https://compostjs.github.io

• Fluid (https://github.com/explorable-viz/fluid) is a programming language for buildinglinked data visualizations described in Chapter 13. The project has since been de-veloped into a general-purpose language for transparent, self-explanatory researchoutputs by the Institute of Computing for Climate Science, University of Cambridge.The development has been led by Roly Pererawith recent contributions from JosephBond and Achintya Rao. I participated in the project in an advisory role and collab-orated on some of the research behind the implementation. A live example can befound at https://f.luid.org.

14.3 New look at data exploration

From a narrow technical perspective, the work presented in this thesis may seen as an as-sorted list of contributions to a wide range of research areas including type systems, pro-gramming languages, provenance tracking, interactive programming environments, datawrangling, data visualization, and program analysis. But looking at the work from this per-spective would be missing the forest for the trees. Collecting the individual contributionsin a single body of work reveals two unifying themes behind the research.The first unifying theme is the broader motivation. If society is to benefit from the in-creasing availability of open data and data processing capabilities, we must make workingwith data accessible to a broader audience. Experts who are not trained as programmersneed to be able to gain valuable insights from data. They also need to be able to do soin ways that support transparency and openness and encourage critical engagement withdata. Unlike in much programming languages research where the typical user is a profes-sional programmer, the typical user for much of the work presented in this thesis has beena data journalist, who is exploring an interesting dataset in order to share relevant insightswith the broader public.The above motivation justifies a number of technical choices made in the presentedwork. I typically tried tomake some aspect of programming simpler, reduce the complexityof programming or design, and develop tools that will assist with the task. The focus madeit possible to restrict problems inways thatwould, in other contexts, seem too constrained.Examples include the data exploration calculus, which does not let users introduce customabstractions, and the iterative prompting mechanism, which restricts aggregations in aquery to a fixed set of pre-defined operations. I believe in the value of restrictions likethese. A programming language research is asmuch a designer as a scientist and designers“tend to (. . .) seek, or impose a ‘primary generator’ (. . .) which both defines the limits ofthe problem and suggests the nature of its possible solution” (Cross, 2007). The focus onsimple tools for users like data journalists has been such ‘primary generator’ for some ofthe research presented in this work.The second unifying theme of this thesis is methodological. The contributions pre-sented here generally approach a problem related to working with data through the per-spective of programming languages and systems research. I do not claim to be the firstor the only one to view data science tooling from this perspective, but my work showsthat the perspective can be fruitful for tackling problems across the entire data sciencelifecycle. In other words, I strongly believe there is a strong mutually beneficial relation-ship between programming languages and systems research and data science tooling. Onthe one hand, methods from programming languages and systems research can be used

https://github.com/explorable-viz/fluid
https://f.luid.org

to build new powerful data science tools. On the other hand, data science tools provideinteresting challenges and design constraints that force us to rethink established assump-tions in programming language research and can inspire new techniques and approaches.I also believe there is more to be done in the space explored by this thesis, both in terms ofbuilding simpler andmore open data science tools and in terms of advancing programminglanguage and systems research.Despite the recent developments in large language models (LLMs), I believe that thedirection outlined in this thesis is still the right one. In many of the systems presentedin this thesis, my aim has been to make the code of a data analysis or data visualizationas simple as possible, possibly to the point where a non-programmer would be able toread and understand it. With the rise of LLMs, the ability to review and understand codeis becoming even more important. If we are faced with a data processing task and use a100-line script generated by an LLM, it may be difficult to gain confidence in the results.But if we use a 10-line script in a language like The Gamma that has been generated withthe assistance of an LLM, as recently explored by Fromm (2024), and if the step-by-stepexecution of the program can be inspected through live previews, gaining the confidencein the results may be much easier.
14.4 Towards programming systems research

Looking at the problem of data exploration from the perspective of programming lan-guages is beneficial in both directions. On the one hand, the programming languages per-spective lets us see the problem in newways and develop new, simple, practical, andmoreprincipled tools for data exploration. This has been the subject of the present thesis. Onthe other hand, a close look at how data scientists interact with programming tools alsoforces us to rethink how we conceptualize programming languages. We need to think lessabout programming languages andmore about interactive and stateful programming sys-
tems. I started exploring this perspective in recent joint work with Jakubovic et al. (2023).When working with data, data scientists often interleave writing of code, running it,and manual tweaking of data and script parameters. If we look merely at the program-ming languages they use, the work may seem uninteresting. But if we look at the richinteractions between the current state, scripts that data scientists are tweaking and whatthey see on the screen, we can see that data exploration is a remarkably interesting kindof programming practice. We should thus see programming more as an interaction witha stateful and interactive system than as the process of writing of textual code. To studyprogramming from this perspective, we will need new formal models, that can accountfor the interactivity lacking from conventional programming language theories, as well asnew research methodologies, which make it possible to contrast and evaluate differentkind of interactions with the programming system. Data science can provide a convenientand familiar testbed for exploring this new perspective on programming.

Bibliography

Martin Abadi and Luca Cardelli. 2012. A theory of objects. Springer Science & Business.
Gregor Aisch, Amanda Cox, and Kevin Quealy. 2015. You draw it: How family income pre-
dicts children’s college chances. https://www.nytimes.com/interactive/2015/05/28/upshot/
you-draw-it-how-family-income-affects-childrens-college-chances.html New York Times.

Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and SteveMock. 2004. Kepler: an extensible system for design and execution of scientific work-flows. In Scientific and Statistical Database Management. IEEE, 423–424.
Judie Attard, Fabrizio Orlandi, Simon Scerri, and Sören Auer. 2015. A systematic reviewof open government data initiatives. Government Information Quarterly 32, 4 (2015),399–418. https://doi.org/10.1016/j.giq.2015.07.006

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents.
IEEE Transactions on visualization and computer graphics 17, 12 (2011), 2301–2309.

Liliana Bounegru and Jonathan Gray. 2021. The Data Journalism Handbook: Towards a
Critical Data Practice. Amsterdam University Press.

Nadieh Bremer and Marlieke Ranzijn. 2015. Urbanization in East Asia between 2000 and2010. http://nbremer.github.io/urbanization/

A. Buja, J. A. McDonald, J. Michalak, and W. Stuetzle. 1991. Interactive data visualizationusing focusing and linking. In Proceedings of Visualization ’91. 156–163. https://doi.org/
10.1109/VISUAL.1991.175794

Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. 2021. PL and HCI: better to-gether. Commun. ACM 64, 8 (jul 2021), 98–106. https://doi.org/10.1145/3469279

Nigel Cross. 2007. Designerly ways of knowing. Birkhauser Verlag Gmbh, Basel.
Evan Czaplicki. 2016. A Farewell to FRP: Making signals unnecessary with The Elm Archi-
tecture. https://elm-lang.org/news/farewell-to-frp

William Davies. 2017. How statistics lost their power–and why we should fear what comesnext. The Guardian (19 January 2017). https://www.theguardian.com/politics/2017/jan/19/
crisis-of-statistics-big-data-democracy

Jonathan Edwards. 2015. Transcript: End-User Programming Of Social Apps. https://www.
youtube.com/watch?v=XBpwysZtkkQ YOW! 2015.

234

https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html
https://doi.org/10.1016/j.giq.2015.07.006
http://nbremer.github.io/urbanization/
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1145/3469279
https://elm-lang.org/news/farewell-to-frp
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.theguardian.com/politics/2017/jan/19/crisis-of-statistics-big-data-democracy
https://www.youtube.com/watch?v=XBpwysZtkkQ
https://www.youtube.com/watch?v=XBpwysZtkkQ

Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Programmingwith Struc-ture Editing. CoRR abs/2110.08993 (2021). arXiv:2110.08993 https://arxiv.org/abs/2110.
08993 Presented at Human Aspects of Types and Reasoning Assistants (HATRA’21), Oct19, 2021, Chicago, US.

Jonathan Edwards, Tomas Petricek, and Tijs van der Storm. 2025. Schema Evolution inInteractive Programming Systems. Art Sci. Eng. Program. 9, 2 (2025). Issue 1. https:
//doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2

Mikolas Fromm. 2024. Design of LLM Prompts for Iterative Data Exploration.
Murdoch J. Gabbay and Aleksandar Nanevski. 2013. Denotation of contextual modal typetheory (CMTT): Syntax and meta-programming. Journal of Applied Logic 11, 1 (2013),1–29. https://doi.org/10.1016/j.jal.2012.07.002

Richard P. Gabriel. 2012. The structure of a programming language revolution. In Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Tucson, Arizona, USA) (Onward! 2012). Associationfor Computing Machinery, New York, NY, USA, 195–214. https://doi.org/10.1145/2384592.
2384611

Jeremy Gibbons. 2010. Editorial. Journal of Functional Programming 20, 1 (2010), 1–1.
https://doi.org/10.1017/S0956796809990256

J. Heer, J. M. Hellerstein, and S. Kandel. 2015. Predictive Interaction for Data Transforma-tion. In Proceedings of the Conference on Innovative Data Systems Research (CIDR).
IBM. 2020. The Data Science Lifecycle: From experimentation to production-level data sci-
ence. https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a min-imal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may 2001),396–450. https://doi.org/10.1145/503502.503505

Shaveta Jain and Agrawal Kushagra. 2022. Comprehensive Survey on Data science, Lifecy-cle, Tools and its Research Issues. In 2022 International Conference on Machine Learn-
ing, Big Data, Cloud and Parallel Computing (COM-IT-CON), Vol. 1. 838–842. https:
//doi.org/10.1109/COM-IT-CON54601.2022.9850751

Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimensions ofProgramming Systems. The Art, Science, and Eng. of Programming 7, 3 (2023), 1–13.
S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche, C. Weaver, B. Lee, D.Brodbeck, and P. Buono. 2011. Research directions in data wrangling: Visualizations andtransformations for usable and credible data. Information Visualization 10, 4 (2011),271–288.
Helen Kennedy, Martin Engebretsen, Rosemary L Hill, Andy Kirk, and Wibke Weber. 2021.Data visualisations: Newsroom trends and everyday engagements. The Data Journalism
Handbook: Towards a Critical Data Practice (2021), 162–173.

https://arxiv.org/abs/2110.08993
https://arxiv.org/abs/2110.08993
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2025/9/2
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1017/S0956796809990256
https://public.dhe.ibm.com/software/data/sw-library/analytics/data-science-lifecycle/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751
https://doi.org/10.1109/COM-IT-CON54601.2022.9850751

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bus-sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay,et al. 2016. Jupyter Notebooks-a publishing format for reproducible computationalworkflows. In 20th International Conference on Electronic Publishing, Fernando Loizidesand Birgit Schmidt (Eds.). 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

David Koop and Jay Patel. 2017. DataflowNotebooks: Encoding and Tracking Dependenciesof Cells. In 9th {USENIX} Workshop on the Theory and Practice of Provenance (TaPP
2017). USENIX Association.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo NMendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al.2015. DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic web 6, 2 (2015), 167–195.

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (SanDiego, California, USA) (POPL ’88). Association for Computing Machinery, New York, NY,USA, 47–57. https://doi.org/10.1145/73560.73564

Sean McDirmid. 2007. Living it up with a live programming language. In Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (Montreal, Quebec, Canada) (OOPSLA ’07). Association forComputing Machinery, New York, NY, USA, 623–638. https://doi.org/10.1145/1297027.
1297073

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System
Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

Stefan K. Muller and Hannah Ringler. 2020. A rhetorical framework for programminglanguage evaluation. In Proceedings of the 2020 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2020). Association for Computing Machinery, New York, NY, USA, 187–194.
https://doi.org/10.1145/3426428.3426927

Greg Myre. 2016. If Michael Phelps Were A Country, Where Would His Gold Medal Tally
Rank? https://www.npr.org/sections/thetorch/2016/08/14/489832779/

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal typetheory. ACM Transactions on Computational Logic (TOCL) 9, 3 (2008), 23. https://doi.
org/10.1145/1352582.1352591

Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, et al. 2004. Taverna: a toolfor the composition and enactment of bioinformatics workflows. Bioinformatics 20, 17(2004), 3045–3054.
Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live functional pro-gramming with typed holes. Proc. ACM Program. Lang. 3, POPL, Article 14 (jan 2019),32 pages. https://doi.org/10.1145/3290327

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1145/1297027.1297073
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3426428.3426927
https://www.npr.org/sections/thetorch/2016/08/14/489832779/
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3290327

Raymond R. Panko. 2015. What We Don’t Know About Spreadsheet Errors Today. In Pro-
ceedings of the EuSpRIG 2015 Conference “Spreadsheet Risk Management”. EuropeanSpreadsheet Risks Interest Group, 1–15.

Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. 2022. Linked visualisationsvia Galois dependencies. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.
org/10.1145/3498668

Tomas Petricek. 2017. Data Exploration through Dot-driven Development. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Infor-matik, 21:1–21:27. https://doi.org/10.4230/LIPICS.ECOOP.2017.21

Tomas Petricek. 2020. Foundations of a live data exploration environment. Art Sci. Eng.
Program. 4, 3 (2020), 8. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8

Tomas Petricek. 2021. Composable data visualizations. J. Funct. Program. 31 (2021), e13.
https://doi.org/10.1017/S0956796821000046

Tomas Petricek. 2022. TheGamma: Programmatic Data Exploration for Non-programmers.In 2022 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2022, Rome, Italy, September 12-16, 2022, Paolo Bottoni, Gennaro Costagliola, MichelleBrachman, and Mark Minas (Eds.). IEEE, 1–7. https://doi.org/10.1109/VL/HCC53370.2022.
9833134

Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible, live andpolyglot notebooks. In 10thUSENIXWorkshop on the Theory and Practice of Provenance,
TaPP 2018, London, UK, July 11-12, 2018, Melanie Herschel (Ed.). USENIX Association.

Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: making struc-tured data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 477–490.
https://doi.org/10.1145/2908080.2908115

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz, and Christopher K. I. Williams. 2023. AI Assistants: A Framework for Semi-Automated Data Wrangling. IEEE Trans. Knowl. Data Eng. 35, 9 (2023), 9295–9306.
https://doi.org/10.1109/TKDE.2022.3222538

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative functional programming. In
Proceedings of the 20th ACMSIGPLAN-SIGACT SymposiumonPrinciples of Programming
Languages (Charleston, South Carolina, USA) (POPL ’93). Association for ComputingMa-chinery, New York, NY, USA, 71–84. https://doi.org/10.1145/158511.158524

João Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Juliana Freire.2015. Collecting and analyzing provenance on interactive notebooks: when IPythonmeets noWorkflow. InWorkshop on the Theory and Practice of Provenance (TaPP). 155–167.
Tye Rattenbury, Joseph M Hellerstein, Jeffrey Heer, Sean Kandel, and Connor Carreras.2017. Principles of data wrangling: Practical techniques for data preparation. O’Reilly.

https://doi.org/10.1145/3498668
https://doi.org/10.1145/3498668
https://doi.org/10.4230/LIPICS.ECOOP.2017.21
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2020/4/8
https://doi.org/10.1017/S0956796821000046
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1109/VL/HCC53370.2022.9833134
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1145/158511.158524

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. 2019. Ex-ploratory and Live, Programming and Coding. The Art, Science, and Engineering of Pro-
gramming 3, 1 (2019). https://doi.org/10.22152/programming-journal.org/2019/3/1

Advait Sarkar and Andrew D Gordon. 2018. How do people learn to use spreadsheets?. In
Proceedings of the Psychology of Programming Interest Group (PPIG),MarianaMarasoiuEmma S oderberg, Luke Church (Ed.).

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2016.Vega-lite: A grammar of interactive graphics. IEEE transactions on visualization and
computer graphics 23, 1 (2016), 341–350.

C. A. Sutton, T. Hobson, J. Geddes, and R. Caruana. 2018. Data Diff: Interpretable, Exe-cutable Summaries of Changes in Distributions for DataWrangling. In 24th ACM SIGKDD
Conference.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Jack Hu, Tao Liu,Brian McNamara, Daniel Quirk, Matteo Taveggia, et al. 2012. Strongly-typed language
support for internet-scale information sources. Technical Report MSR-TR-2012-101. Mi-crosoft Research.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, and Tomas Petricek. 2013.Themes in information-rich functional programming for internet-scale data sources. In
Proceedings of the 2013 Workshop on Data Driven Functional Programming (DDFP ’13).ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/2429376.2429378

S. Thirumuruganathan, L. Berti-Equille, M. Ouzzani, J.-A. Quiane-Ruiz, and N. Tang. 2017.UGuide: User-guided discovery of FD-detectable errors. In Proceedings of the ACM In-
ternational Conference on Management of Data (SIGMOD ’17). 1385–1397.

Gerrit JJ van den Burg, Alfredo Nazábal, and Charles Sutton. 2019. Wrangling messy CSVfiles by detecting row and type patterns. Data Mining and Knowledge Discovery 33, 6(2019), 1799–1820.
Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsuphasawat,Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, BenWelsh, and Scott Sievert. 2018. Altair:Interactive Statistical Visualizations for Python. The Journal of Open Source Software 3,32 (2018). https://doi.org/10.21105/joss.01057

Bret Victor. 2012a. Inventing on Principle. http://worrydream.com/InventingOnPrinciple

Bret Victor. 2012b. Learnable programming: Designing a programming system for under-
standing programs. http://worrydream.com/LearnableProgramming

Richard Wesley, Matthew Eldridge, and Pawel T. Terlecki. 2011. An analytic data engine forvisualization in tableau. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence onManagement of Data (Athens, Greece) (SIGMOD ’11). Association for ComputingMachinery, New York, NY, USA, 1185–1194. https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational and
Graphical Statistics 19, 1 (2010), 3–28.

https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.21105/joss.01057
http://worrydream.com/InventingOnPrinciple
http://worrydream.com/LearnableProgramming
https://doi.org/10.1145/1989323.1989449

Hadley Wickham. 2016. ggplot2: Elegant graphics for data analysis. Springer.
Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino Mc-Gowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, JimHester, et al.2019. Welcome to the Tidyverse. Journal of open source software 4, 43 (2019), 1686.
Leland Wilkinson. 1999. The grammar of graphics. Springer-Verlag New York. https://doi.

org/10.1007/978-1-4757-3100-2

https://doi.org/10.1007/978-1-4757-3100-2
https://doi.org/10.1007/978-1-4757-3100-2

	Acknowledgements
	Contents
	I Commentary
	Introduction
	How data journalists explore data
	Requirements of simple tools for data exploration
	Data exploration as a programming problem
	Utilised research methodologies
	What makes a programming tool simple
	Structure of the thesis contributions
	Research outlook

	Type providers
	Information-rich programming
	Type providers for semi-structured data
	Shape inference and provider structure
	Relative safety of checked programs
	Stability of provided types

	Type providers for query construction
	Formalising lazy type provider for data querying
	Safety of data acquisition programs

	Contributions

	Data infrastructure
	Notebooks and live programming
	Live data exploration environment
	Data exploration calculus
	Computing previews using a dependency graph

	Live, reproducible, polyglot notebooks
	Architecture of a novel notebook system
	Dependency graphs for notebooks

	Contributions

	Iterative prompting
	Data wrangling and data analytics
	Iterative prompting
	Iterative prompting for data querying
	Usability of iterative prompting

	AI assistants
	Merging data with Datadiff
	Formal model of AI assistants
	Practical AI assistants

	Contributions

	Data visualization
	Visualisations to encourage critical thinking
	Composable data visualisations
	Declarative chart descriptions
	Rendering a Compost chart
	Functional abstraction and interactivity

	Automatic linking for data visualizations
	Creating linked visualizations using Fluid
	Language-based foundation for explainable charts
	Bidirectional dependency analyses

	Contributions

	II Publications: Type providers
	Types from data: Making structured data first-class citizens in F#
	Data exploration through dot-driven development

	III Publications: Data infrastructure
	Foundations of a live data exploration environment
	Wrattler: Reproducible, live and polyglot notebooks

	IV Publications: Iterative prompting
	The Gamma: Programmatic data exploration for non-programmers
	AI Assistants: A framework for semi-automated data wrangling

	V Publications: Data visualization
	Composable data visualisations
	Linked visualizations via Galois dependencies

	VI Conclusions
	Contributions and outlook
	Contributions to included publications
	Open-source software contributions
	New look at data exploration
	Towards programming systems research

